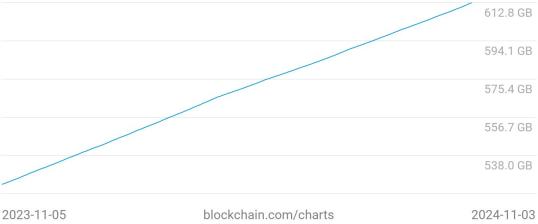


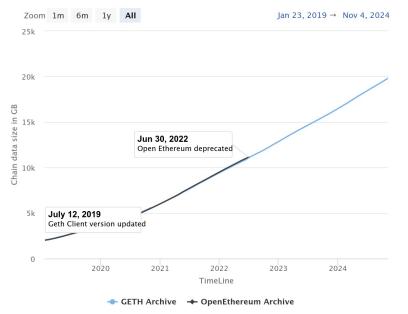
Learning Goals

- Lecture 11
 - Understand blockchain scalability challenges and evaluate different scaling approaches
 - Compare Layer 1 and Layer 2 solutions and their trade-offs in decentralization, security, and scalability
 - Explain how rollups work and the differences between Optimistic and ZK approaches
 - Understand payment channels using multisig contracts and HTLCs for atomic off-chain transactions



Scalability Solutions

- Blockchains grow linearly [ETH, ETH]
- Solutions
 - 1. First Layer Scalability Solutions (on-chain)
 - Sharding (distribute storage)
 - Improve protocol (SegWit, Taproot, Rollups)
 - 2. Second Layer Scalability Solutions (offchain)
 - State Channels (payment channels)
 - Lightning Network
 - Sidechains / Blockchain Interoperability

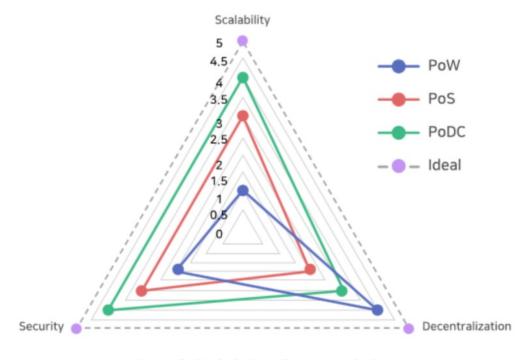

Blockchain Size 612.9 GB

Ethereum Full Node Sync (Archive) Chart

Source: Etherscan.io
Click and drag in the plot area to zoom ir

Layer 1 vs Layer 2: Basic Concepts

- Layer 1 (Base Chain)
 - Main Ethereum blockchain
 - Handles consensus, security, data availability
 - All nodes process all transactions
 - Limited by block size and time
- Layer 2 (Scaling Solutions)
 - Additional networks/protocols built on top of Ethereum
 - Inherit security from Layer 1
 - Process transactions externally
 - Post results back to mainnet


Core Concepts

- Additional networks/protocols built on top of Ethereum
- Process transactions off-chain, post results to L1
- Inherit Ethereum's security guarantees
- Key Benefits
 - 10-100x lower fees (pick one contracts fees \$10 now, random from 2024 – 308\$, L2 e.g., arbiscan)
 - Increased transactions per second (TPS)
 - Trade-off: reduced decentralization vs. L1

Why Do We Need Layer 2?

- Ethereum's current limitations
 - ~10-20 transactions per second (depends how you count)
 - Average gas fees is highly variable
 - Block space competition
 - Growing demand for DeFi and NFTs
- The Blockchain Trilemma
 - Decentralization: Network participants and control
 - Security: Protection against attacks, 51% on shards
 - Scalability: Transaction throughput and costs
 - Why we can't have all three on L1

Comparison of Blockchain Trilemma Solutions

Source: https://www.halborn.com/blog/post/what-is-sharding

Main Types of Layer 2 Solutions

- Layer 2 Solutions (inherit L1 security)
 - Rollups
 - Bundle multiple transactions into one
 - Submit transaction data to Ethereum mainnet
 - Two main types:
 - Optimistic Rollups
 - Zero-Knowledge (ZK) Rollups
 - State Channels
 - Private payment channels between parties

- Not Layer 2 (separate security)
 - Sidechains
 - Independent security (separate from Ethereum)
 - Own consensus mechanism (e.g., PoS)
 - Risk: If compromised, assets can be lost
 - Protocol-level connection to parent chain
 - Regularly anchors state to L1
 - Examples: Polygon PoS

Optimistic vs. Zero-Knowledge Rollups

- Optimistic Rollups
 - Post transactions without proofs
 - Assume transactions are valid by default
 - Use fraud proofs to challenge invalid transactions
 - 7-day withdrawal period for security
 - Pros: EVM compatible, simpler technology
 - Cons: Longer withdrawal times
 - Examples: Optimism, Arbitrum

- ZK Rollups
 - ZKP: "A Zero-Knowledge Proof (ZKP) is a cryptographic method that allows one party to prove they know or possess specific information without revealing the information itself."
 - Generate validity proofs for each batch
 - Use mathematical proofs to verify transactions
 - Immediate finality once proven
 - Pros: Faster withdrawals, more efficient
 - Cons: More complex technology, limited EVM compatibility, compute intensive
 - Examples: zkSync, StarkNet

Technical Details

- Key Components
 - Smart Contracts on L1
 - Handle deposits/withdrawals
 - Store transaction batches
 - Verify proofs
 - Off-chain Infrastructure
 - Sequencers for transaction ordering
 - Provers/Validators for verification
 - State Management
 - Maintain current state off-chain
 - Regular state roots posted to L1

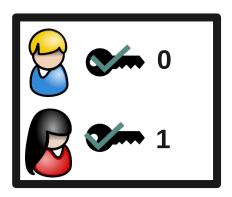
- Flow
 - 1) User submits transaction
 - 2) Sequencer processes & orders
 - 3) Batch posted to Ethereum (~10-15 min)
- Security levels:
 - L2 confirmation from sequencer: immediate
 - L1 Batch Confirmation: ~10-15 minutes
 - Full Security: 7 days

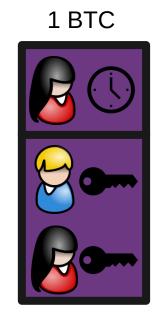
Decentralization & Security: Sequencer and Nodes

- Sequencer malicious or down
 - Users can force-include transactions directly through L1
 - Alternative sequencers can take over
 - Worst case: delays, but funds remain safe
- Data availability
 - ALL transaction data is posted to Ethereum
 - Posted in compressed calldata ~ratio 1:10
 - Anyone can reconstruct the entire Arbitrum state, not just summaries - full transaction data

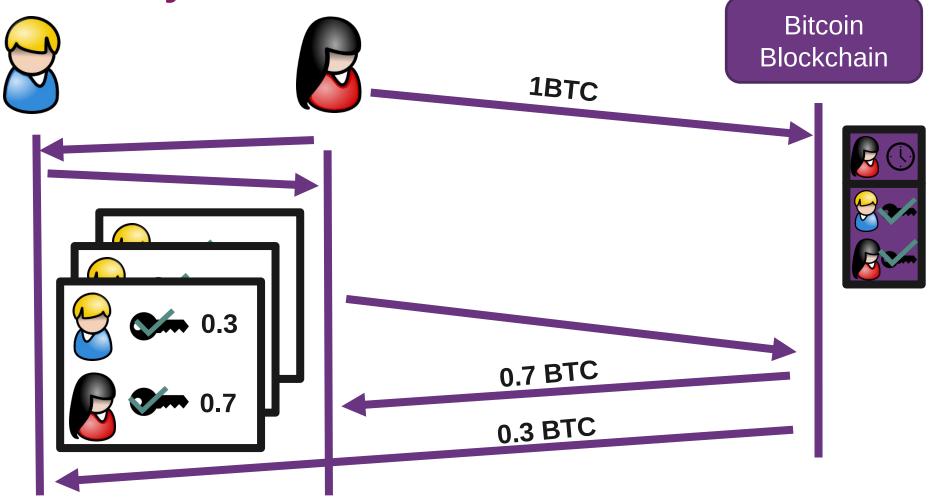
- Arbitrum node
 - Anyone can run an Arbitrum node
 - validate all transactions
 - Challengers are rewarded for finding fraud
 - Can challenge incorrect state transitions within 7 days
- ZK is resource intensive
 - ZK proof for Sui: 1-2v cores: 20-30sec
 - My Threadripper 2990WX 32-Core Processor,2sec

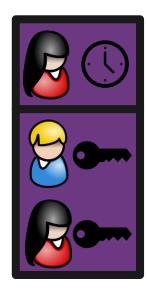
Bridges / Future of L2

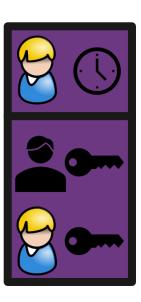

- For L1 to L2: ETH on L1
 - → ETH locked in Bridge contract
 - → Message to L2 to mint WETH
 - → Auto-unwrapped to ETH on L2
- For L2 to L1: ETH on L2
 - → Initiate withdrawal
 - → Wait 7 days
 - → Claim on L1
 - → ETH released from bridge contract
- You need on both chains ETH for fees
 - Or use exchanges / fast bridges (fee vs risk)


- L2 Ecosystem Growth
 - Total Value Locked (TVL) trends
 - Major DApps deploying on L2s
 - User adoption metrics
 - Cost comparisons with L1
 - L2 vs. fast L1
- Future
 - Cross-L2 communication protocols
 - Protocol standardization, Proto-Danksharding
 - Role in Ethereum's scalability roadmap

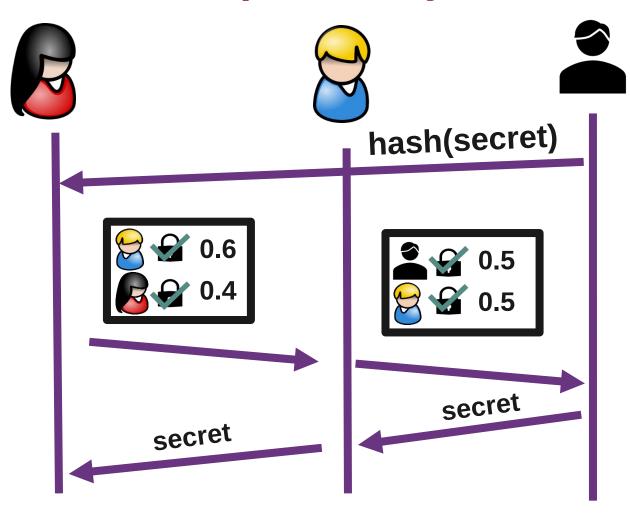
Direct Payment Channel with 2-of-2 Multisig Contracts

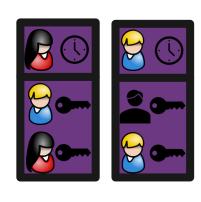

- Open a payment channel between Alice and Bob
 - 1 BTC of Alice to Locked Multisig
 - 2-of-2 multisig
 - Initial offchain TX
 - Bob does nothing


Direct Payment Channel with 2-of-2 Multisig Contracts



Indirect Payment Channel with HTLC


- Now we are ready to open a payment channel between Alice and Bob and Charlie
 - 1 BTC lockup, Alice Bob, Bob Charlie
 - Alice wants to send 0.5 BTC to Charlie (no direct channel)



Atomic Swaps – 2 Payment Channels with 1 BTC

Bitcoin Blockchain

