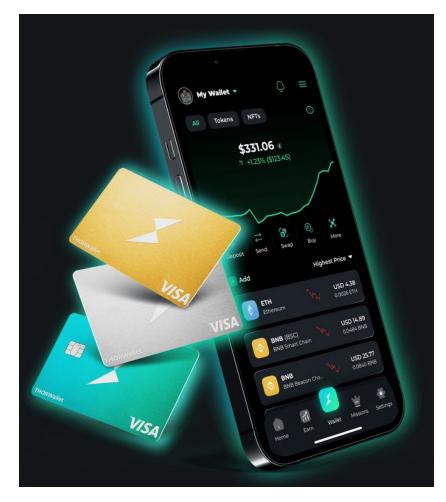


Learning Goals

- Lecture 9
 - Knowledge
 - Understand wallet types and their security properties
 - Explain HD wallets and BIP32/BIP39/BIP44 standards
 - Describe the path from mnemonic phrases to derived keys
 - Understand hardened vs. non-hardened key derivation
 - Skills
 - Evaluate appropriate wallet types for different use cases
 - Trace mnemonic generation and key derivation processes
 - Apply best practices for seed phrase backup and security

Introduction to Cryptocurrency Wallets

- What Are Cryptocurrency Wallets?
 - Digital tools to store, send, and receive digital currencies
 - Analog to ~bank accounts
- Key Functions of a Wallet
 - Storage of Private and Public Keys
 - Sign transactions
 - Interaction with blockchain
 - Balance checking and transaction history
- Types of Wallets
 - Hardware Wallets, Software Wallets, Paper Wallets


- Hardware Wallets
 - Trezor, Ledger, BitBox specialized hardware
- Software Wallets
 - Metamask, Trust Wallet
- Paper Wallet
 - Physical document with mnemonic words

	SW wallet	HW wallet	Paper wallet
Hot wallet	X		
Cold wallet		X	X

Introduction to Cryptocurrency Wallets

- Importance of wallet security
 - Keeping assets safe from unauthorized access and cyber theft
 - Importance of backup and recovery methods
- Convenience and accessibility
 - Ease of use, mobile and desktop access
 - Importance for widespread adoption of cryptocurrencies
- Cryptocurrency wallets vs traditional banking
 - User-controlled security vs. bank-managed security

Introduction to HD Wallets

- Hierarchical Deterministic (HD) Wallets
 - Most cryptocurrency wallet are HD wallets
 - Based on the BIP32/BIP44 protocol
 - Allows creation of derived keys from a single master seed
- Key Features
 - Generation of multiple cryptocurrency addresses from a single seed
 - Simplifies management and backup
 - Each transaction could use a unique address for enhanced privacy

- Understanding BIP32/BIP44
 - BIP32 (Bitcoin Improvement Proposal 32) introduces the concept of hierarchical deterministic wallets
 - BIP44 builds on BIP32, adding a structure for multiple coin types and accounts
- Mechanism of HD Wallets
 - Based on a single seed (typically based on a BIP39 mnemonic phrase)
 - Seed leads to the generation of a master private key

Introduction to HD Wallets

- Benefits of HD Wallets
 - Efficient Backup: Single seed backup is sufficient for multiple addresses and keys
 - Easy Organization: Easy management of funds across various addresses/accounts
 - e.g., THORWallet, one seed, many accounts, BTC, ETH, ...
- Disadvantages
 - User Experience → most wallets ask you to write down the seed phrase
 - Unexperienced user: what is this? Is this important?

- BIP39 mnemonic phrase
 - Seed phrase: series of words from a defined list
 - Essential for wallet backup and restoration
 - If lost, your cryptos are lost
- Seed Phrase Composition
 - Typically a sequence of 12 or 24 words
 - Encoding of 128bit or 256bit
- Let's see how it works:

BIP39

- Generate a random number 128 bit or 256
 - Lets use 128bit for simplicity
 - Create random hex number (128bit)
 - hex=\$(hexdump -vn16 -e'16/1 "%02X"' /dev/urandom)
 - Convert to binary
 - hex_bin=\$(echo "obase=2; ibase=16; \${hex}"
 BC LINE LENGTH=0 bc)
 - Word list has 2048 entries = 11bit
 - 12 words x 11 bit = 132bit, 4 bit wasted?
 - 4bit used as checksum append first 4 bit of sha256(rand number), 24 words x 11 bit = 264bit, 8 bit checksum
 - hash_hex=\$(printf "%s" "\$hex" | xxd -r -p
 sha256sum | cut -d' ' -f1 | tr '[:lower:]'
 '[:upper:]')
 - checksum=\$(echo "obase=2; ibase=16; \$hash_hex"
 BC_LINE_LENGTH=0 bc)
 - echo \${padded_hex_bin}\${padded_hash_bin:0:4}

- 11111110000
 11100101100
 11010001111

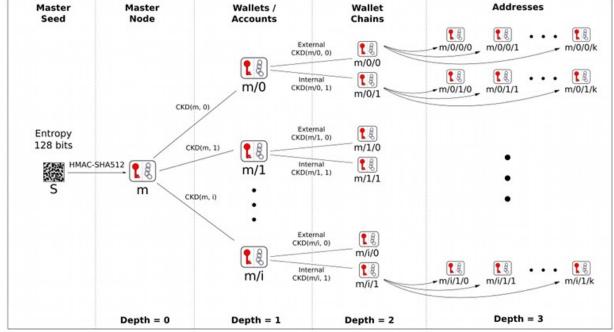
 10100111000
 00001010000
 1000010101

 10100111000
 00110100110
 01111000001

 1111111111
 01001000110
 00111111110
- Take first 11 bit, lookup word
 - 111111100010 → 2019 → wisdom
- Take second 11 bit, lookup word
 - 11100101100 → 1837 → tortoise
- •
- Take the last 11 bit, lookup word
 - 001111111110 → 511 → divert
- Wrong words = checksum won't match

BIP39

- 256 bit, same, but 8bit checksum
 - Mnemonic Code Converter [link]
- Seed extension
 - 13th/25th word
- From mnemonic to seed
 - PBKDF2 function with mnemonic sentence as password, string "mnemonic" + passphrase as salt
 - Seed = PBKDF2("wisdom tortoise relief", "mnemonicyourpassphrase", 2048, ...)
- Seed can be used for BIP-32



BIP32/BIP44

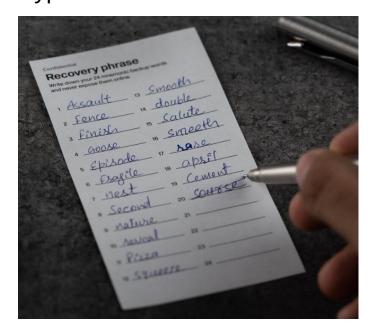
• BIP 32

Child Key Derivation Function $\sim CKD(x,n) = HMAC-SHA512(x_{Chain}, x_{PubKey} || n)$

• BIP 44

- m / purpose' / coin_type' / account' / change / address_index
 - Purpose → 44
 - Coin type
 - Bitcoin: m/44'/0'/2'/0/1
 - Ethereum: m/44'/60'/2'/0/1
 - Account → Account 2
 - Change (Bitcoin specific resp. UTXO)
 - Address_index → Index 1
- Hardened vs. non-hardened
 - Hardened: hash(parent private key + index)
 - Non: hash(parent public key + index)
 - Security implications: leaking derived private keys
 - But: if someone has access to a non-hardened public key, they can generate all subsequent non-hardened public keys in the same branch.

ECC


- K = k × G
 - Private Key (k)
 - Base Point (G)
 - Parent Public Key (K) \rightarrow K = k × G
 - "x" is scalar multiplication on the elliptic curve
- Key derivation
 - $a \times K = a \times (k \times G)$
 - k is based on seed
 - a based on
 - hash(parent private key + index)
 - hash(parent public key + index)

- HD Wallets are the backbone of DeFi.
- Be aware:
 - Single Point of Failure: The seed phrase represents a single point of failure; its compromise can lead to the loss of all associated assets
 - User Responsibility: In DeFi, users are solely responsible for their seed phrases. There's no central authority to appeal to for recovery if the seed is lost or stolen
 - Awareness: Educating users about the importance of securing their seed phrase and the mechanics of HD wallets is crucial in the DeFi space.
 - Best Practices: Promoting security best practices and the responsible use of DeFi services.

Best Practices Mnemonic

- When showing Metamask, I actually showed how **not** to do it
 - Write It Down: always write down the seed phrase, avoid digital storage unless it's encrypted. In addition

https://www.cypherock.com/blogs/post-seedless-wallets

- Use Metal Backups: For added durability against physical damage, store the seed phrase on a metal plate.
- Maintain Multiple Backups: prevent loss due to accidents or natural disasters
- Educate Yourself Continuously

