
02.10.2025

Blockchain (BlCh)
Solidity

Thomas Bocek

Blockchain2

Learning Goals
● Lecture 4

● Solidity fundamentals
— Understand smart contract development

— Learn Solidity syntax and structure

— Grasp gas optimization principles

— Deploy contracts

Blockchain3

Why Solidity? EVM Dominance
● Ethereum: ~60% of total DeFi TVL

(DefiLlama, 2025)
● Top 10 chains: 7 are EVM-compatible

● 1. Ethereum (EVM), 4. BSC (EVM), 6. Plasma
(EVM), 7. Base (EVM L2), 8. Arbitrum (EVM
L2), 10. Avalanche (EVM)

● Major EVM L2s: Base, Arbitrum, Optimism,
Polygon

● Ethereum + EVM L2s = dominant smart
contract platform
● Most DeFi protocols built on EVM

● Learning Solidity = access to largest
blockchain ecosystem

ht
tp

s:
//d

ef
ill

am
a.

co
m

/c
ha

in
s

https://defillama.com/chains

Blockchain4

Development Environment
● Remix IDE: https://remix.ethereum.org

● Browser-based, zero installation required
● Built-in compiler, debugger, and deployment tools

● Local alternatives: VS Code, Zed (plugin), Hardhat,
Foundry

● Start on testnets
● Unless chain is extremely cheap (e.g., Sui)

● Multiple testnets exist for different purposes
● Sepolia: Most stable, widely supported (general

development)
● Holesky being deprecated September 2025 due to

issues (designed for staking, infrastructure, and protocol
testing)

● Hoodi: New testnet for staking/validators (replaces
Holesky, designed for validators and staking providers)

● Free test ETH from faucets
● Sepolia: https://sepolia-faucet.pk910.de/

● Hoodi: https://hoodi-faucet.pk910.de

https://remix.ethereum.org/
https://github.com/zarifpour/zed-solidity
https://sepolia-faucet.pk910.de/
https://hoodi-faucet.pk910.de/

Blockchain5

Gas - Ethereum's Fuel
● Remix Desktop version [link]

● No direct MetaMask integration →
WalletConnect

● Payment for computation in EVM

● Every operation (opcode) costs gas

● Unit of computational work measurement

● If gas runs out: state reverted, ETH lost

● Writing to state is expensive

● Gas cost examples (yellow paper):
● SSTORE (storage write): 20’000 gas

● SLOAD (storage read): 200 gas

● ADD operation: 3 gas

● Contract creation: 32’000 gas base

● Poor optimization = high user costs = bad
UX
● 1st priority: correctness of the contract

● 2nd priority: gas efficient

https://github.com/remix-project-org/remix-desktop/releases
https://ethereum.github.io/yellowpaper/paper.pdf

Blockchain6

Solidity Source File Structure
● SPDX License Identifier (mandatory since 0.6.8)

● // SPDX-License-Identifier: MIT
● Private code: UNLICENSED

● Version pragma:
● pragma solidity ^0.8.30;

● ^0.8.30 means: ≥0.8.30 but <0.9.0

● Imports: import "filename";
● OpenZeppelin: battle-tested, audited standard library
● import

"@openzeppelin/contracts/token/ERC20/ERC20.sol";
● Do not rewrite standards from scratch - use

OpenZeppelin

● Comments: // single-line or /* */ multi-line

https://www.openzeppelin.com/solidity-contracts
https://docs.openzeppelin.com/contracts

Blockchain7

Contract Structure - State Variables / Functions
● State Variables:

● Persistent storage on blockchain

● Expensive to write, cheap to read

contract SimpleStorage {

 uint256 storedData;

}

● Functions
● Internal/external calls

● Visibility: public, private, internal, external

● Function types:
— pure: no state read/write

— view: read state, no write

— payable: can send/receive ETH

— (default): can read and write state

Blockchain8

Data Types
● Value Types

● bool: true/false
● uint8 to uint256 (8-bit steps), int8 to int256

— uint256 is most common (alias: uint)

● address: 20-byte Ethereum address
● address payable: can receive ETH

via .transfer() or .send()
● Reference Types

● bytes1 to bytes32: fixed-size byte arrays
● bytes: dynamic byte array
● Arrays: uint[] dynamic or uint[5] fixed
● string: UTF-8 encoded text (expensive!)

● Complex Types

● Mapping: mapping(address => uint)
— Hash table, no iteration possible

— cannot get list of keys

— Default value for non-existent keys

● Struct: struct User { string name;
uint age; address wallet; }
— Custom composite types for grouped data

● Enum: enum Status { Pending,
Active, Completed, Cancelled }
— Named constants for state management

Blockchain9

Function Modifiers / Events
● Execute checks before function

● Reusable access control

● Common in OpenZeppelin contracts
(Ownable, Pausable)

● _; placeholder = where function body
executes

modifier onlyOwner() {

 require(msg.sender == owner);

 _;

}

● Events
● One-way communication to outside world

(blockchain → frontend)

● Used for logging and frontend notifications

● Not for reading data back into contract

● Misused for debugging → use Hardhat
console.log when local, remote - Tenderly, or
Remix Debugger

● Events are cheaper than storage (logged, not
stored in state)
— event HighestBidIncreased(string msg);
— emit HighestBidIncreased("hello");

https://docs.openzeppelin.com/contracts/5.x/access-control
https://tenderly.co/

Blockchain10

Error Handling / Data Location
● Custom errors (gas efficient)

● error NotEnoughFunds(uint256
requested, uint256 available);

● revert NotEnoughFunds(amount,
balance);

● require(): more expensive, common

● require(balance >= amount, "Not
enough");

● assert(): for catching bugs

● try/catch supported for external calls

● Data Location

● storage: persistent on blockchain, expensive
writes
— State variables are always in storage

● memory: temporary, cleared after function
execution
— Function parameters, local variables

● calldata: read-only, cheapest for external
function parameters

● Critical for gas optimization and understanding
copies vs references

Blockchain11

Built-in Variables / Inheritance
● Built-in Variables

● msg.sender: caller address

● msg.value: ETH sent with call

● block.timestamp: current block time

● block.number: current block

● Units: wei, gwei, ether / seconds, minutes,
hours, days

● Inheritance
● Multiple inheritance supported

● virtual: function can be overridden

● override: function overrides parent

● Always use OpenZeppelin base contracts
(audited, battle-tested)
— contract MyToken is ERC20, Ownable,

Pausable

Blockchain12

Advanced Topics & Best Practices
● EVM Fundamentals:

● All data types padded to 256 bits (32 bytes) in EVM
● Function selector: first 4 bytes of keccak256(function

signature)
— Example: transfer(address,uint256) →

0xa9059cbb
● ABI encoding: how Solidity packs function calls and data
● Understanding this helps optimize gas and debug issues

● Overflow & Gas Optimization:
● Solidity ≥0.8.0: automatic overflow/underflow checks

(safe by default)
● Before 0.8: required SafeMath library to prevent wrap-

around bugs

● unchecked{}: disable overflow checks for gas
optimization
— Use only when mathematically certain no overflow

possible

— Saves ~100-200 gas per operation

— Wrap around = security vulnerability, not
acceptable

● Advanced Features (use sparingly):
● Inline assembly (Yul): low-level EVM access,

rarely needed
— Use only for extreme optimization or EVM-specific

operations

— Makes code harder to audit and maintain

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

