OST

Eastern Switzerland
University of Applied Sciences

Blockchain (BICh)

Account Abstraction

Thomas Bocek
27.09.2025

Learning Goals

e Lecture 3

« Account Abstraction

— Single-sentence summary: Allow smart contract wallets (smart accounts) to act as first-class user accounts,
unlocking UX, recovery, and new signature schemes
— Learning goals:

— Understand components
— UserOperation
— Bundler
- EntryPoint
— Paymaster

— Current ecosystem adoption
— Tradeoffs
— Next steps

2 | Blockchain O OS T

3

Motivation: UX & security problems with EOAs

* EOAs: user manages private keys and
native ETH for gas

« Bad UX for mainstream users

* Common issues for adoption
 |lost seed phrases

-+ confusing gas payment, poor onboarding

* With account abstraction
- Social login, account recovery
+ Gas sponsorship
« Session keys

« Batched flows

Blockchain

-as Private Key
No ETH for Gas

©

Contract
——————————————————— -> B

Smart Contract B

Target Function

User

Has Private Key
No ETH for Gas

©

?
Contract Contract
> >

User

das Private Key
No ETH for Gas

Smart Contract A Smart Contract B
Has 10 ETH Target Function
BLOCKED
Contract _@ Contract
Contract A cannot pay for user

Smart Contract A Smart Contract B
Has 10 ETH Target Function

OOST

Fusaka Upgrade & EOF Removal

* Fusaka upgrade scheduled: 03.12.2025 ° Native Account Abstraction delayed indefinitely
EIP-7701 (Native AA) depends on EOF infrastructure

+ Originally planned: Nov 2025
Current focus on ERC-4337 implementation

* Focus on PeerDAS and scalability

: Potential inclusion in future Glamsterdam upgrade
Improvements

_ . * Community consensus challenges
e Ethereum Object Format (EOF) officially

Over 100 participants in final decision call
removed from Fusaka

Lack of agreement on EOF variants (Options A-D)

* Decision made during April 2025 * Priority given to PeerDAS for scaling improvements
- Technical uncertainties and community * Impact on AA roadmap

opposition cited ERC-4337 remains primary AA solution for 2025-2026
- EOF was intended as architectural foundation - Native protocol integration pushed to post-2026

for native AA Reliance on external infrastructure: bundlers, paymasters

4 | Blockchain O OS T

https://eips.ethereum.org/EIPS/eip-4337
https://bitcoinethereumnews.com/ethereum/ethereum-drops-eof-from-fusaka-upgrade-after-community-pushback/

5

ERC-4337 (1)

* ERC-4337: introduce
UserOperation objects + an
alternative (off-chain) mempool
Instead of changing consensus
rules.

* Components
- Smart Account (contract wallet)
« UserOperation
« Bundler

« EntryPoint (on-chain
router/validator)

- Paymaster (optional gas sponsor)

Blockchain

Creates Intent

Smart Account
Contract Wallet

Custom Logic
Validation

UserOperation Bundler
Transaction Intent Off-chain
+ Signature Validator

EntryPoint
On-chain Router
Singleton Contract

Target Contract

Final Destination
DeFi, NFT, etc.

Paymaster

(Optional)
Gas Sponsor
Fee Abstraction

OOST

6

ERC-4337 (2)

* Step 1: User Creates UserOperation

Creates Intent

User wallet creates a UserOperation object -
containing transaction intent S~

Similar to a regular transaction but with 14
specialized AA fields:

— sender, nonce, callData, signature (standard
fields)

— paymasterAndData, maxFeePerGas,
preVerificationGas (AA-specific)

— initCode, verificationGasLimit, callGasLimit
(execution parameters)

Smart Account
Contract Wallet

Custom Logic
Validation

Contains all necessary information for
validation and execution

Signed by user but not yet submitted to
Ethereum

Ready for bundler from alternative mempool

Blockchain

©—

=
—
-

~ -~
—

e ——]

Bundler
Off-chain
Validator

UserOperation

BEING CREATED

————

Alternative M UserOperation Contents

Key Fields:

 sender: Smart Account address

* nonce: Prevents replay attacks

» callData: Function to execute

* signature: User authorization

* maxFeePerGas: Gas price limit

» paymasterAndData: Gas sponsor info
* preVerificationGas: Bundle overhead

14 total fields defining transaction intent

L

1wy inmones

(Optional)

Gas Sponsor
Fee Abstraction

Target Contract

Final Destination
DeFi, NFT, etc.

OOST

ERC-4337 (3)

UserOperation Bundler
BEING CREATED \O/ﬁl'_‘;h‘:""
. allaator
* Step 2: Bundler Validates and Bundles
UserOperations
. . ‘o Alternative Mempool (Off-chain) ‘)
* Bundler collects multiple UserOperations = o)
from alternative mempool Bundler Validation Process
Validation Checks:
° Performs Oﬂ:—Cha”’] Val|dat|0n CheCkS » Signature verification (off-chain simulation) Multiple Userops
] * Gas price and limit validation batched together
— Signature verification through simulation » Account nonce checking
« Paymaster balance verification
- Gas price and limit validation « Reputation scoring (spam prevention)
_ Account nonce Checking for replay pl‘OteCtion Result: Bundle of valid UserOperations ready for submission
Smart Account Paymaster
— Paymaster / smart account balance Contract Wallet (Optional)
Verifica’tion Custom Logic Gas Sponsor

Validation Fee Abstraction

— Reputation scoring for spam prevention

* Creates optimized bundle to minimize gas

COStS Target Contract
Final Destination
* Prepares bundle for submission to PeRLNET et

EntryPoint contract

7 | Blockchain O OST

ERC-4337 (4)

* Step 3: EntryPoint Executes Bundle

EntryPoint receives bundle as regular
Ethereum transaction from bundler

Processes each UserOperation in
atomic two-phase execution:

— Validation Phase: Calls validateUserOp()
on Smart Account (state-modifying)

— Execution Phase: Calls execute() with
callData (must follow validation)

Acts as single on-chain coordinator for
all Account Abstraction operations

Manages gas accounting and refunds
bundler immediately

If any UserOperation fails, entire bundle

transaction reverts

8 | Blockchain

Creates Intent

Smart Account
Contract Wallet

Custom Logic
Validation

UserOperation Bundlgr
BEING CREATED Off-chain
Validator

EntryPoint

On-chain Router
Singleton Contract

EntryPoint Execution

Two-Phase Process:

Phase 1: Validation

« Calls Smart Account validateUserOp()

« Calls Paymaster validatePaymasterUserOp()
« Validates signatures and gas payments

Phase 2: Execution
« Executes callData on Smart Account

Target Contract

Final Destination
DeFi, NFT, etc.

UserOp 1

UserOp 2

00

UserOp 3

Multiple UserOps

batched together

Paymaster
(Optional)

Gas Sponsor
Fee Abstraction

OOST

ERC-4337 (4)

* Step 4: Smart Account Validation & Execution Crgjmem
* EntryPoint calls validateUserOp() on Smart

Bundler
Off-chain
Validator

UserOperation
BEING CREATED

UserOp 1

00

P UserOp 2
Account contract <
* Smart Account executes custom validation logic: Useron 3
~— Signature verification (ECDSA, multisig, biometric, EntryPoint
e'[C.) On-chain Router Multiple UserOps

Singleton Contract batched together

Nonce validation for replay protection
Custom authorization rules (time limits, spending

caps)
~ Session key validation for pre-approved
operations Smart Account Paymaster
. . . Contract Wallet (Optional)
If Paymaster present, EntryPoint validates gas Lo s
sponsorship and deposit balance Validation Fee Abstraction

* Validation can modify state (increment nonce,
update counters)

* If validation succeeds, EntryPoint calls execute() Target Contract
on Smal’t ACCOU nt Final Destination

DeFi, NFT, etc.
* Smart Account forwards call to target contract
(DeFi, NFT, etc.)

9 | Blockchain O OST

ERC-4337 (5)

* ETH Flow
- Bundler pays gets, gets refunded by the
EntryPoint
— Only executed if Bundler can be refunded

« Refunding very flexible
— Paymaster (typical case) refunds
— Smart Account (typical case) refunds

— Or via target contract
— Refunds via Smart Account
— Refunds via Paymaster
— can be implemented theoretically...

* Native Account Abstraction could make
this a lot easier...

10 § Blockchain

Pavs Gas Bundler

Off-chain
to Ethereum Validator

/ Refunds Gas
EntryPoint

On-chain Router
Singleton Contract

Paymaster
(Optional)

Gas Sponsor
Fee Abstraction

<. Refunds Gas

u,y
gy
L]
.....
ay
by
Ty

Target Contract
. Final Destination
DeFi, NFT, etc.

Core UX Features Unlocked by Account Abstraction

* (Gasless Transactions / Fee Sponsorship * Session Keys / Limited Delegation
Paymasters enable apps or protocols to - Pre-approved operations within defined
sponsor user gas fees parameters
Users can pay in ERC-20 tokens instead of - Gaming: auto-approve in-game transactions up
ETH

to X tokens
Fiat on-ramps possible without ETH) _ L
requirements - DeFi: automated trading within risk limits

* Social Recovery & Key Management * Batched Transactions / Meta-Transactions

* Guardian-based account recovery (friends, - Single-click multi-step workflows (approve +
family, institutions) swap + stake)
Multisig validation with customizable - Atomic operations that succeed or fail together
thresholds
Eliminates catastrophic seed phrase loss * Improved efficiency and user experience
scenarios

11 | Blockchain O OS T

12

* Wallet Teams: Smart Account Implementations

SimpleAccount (reference implementation), Safe
(Gnosis Safe variants)

Argent, Soul Wallet, Biconomy, ZeroDev Kernel

Custom implementations with specialized
validation logic

* Bundlers: Permissionless Transaction
Aggregators

Mainnet: Stackup, Alchemy, Pimlico, Etherspot
Skandha

Testnets: Stackup testnet bundlers, Alchemy dev
infrastructure

Anyone can run a bundler - competitive
marketplace for efficiency

Blockchain

Who Builds the Infrastructure? (Ecosystem Roles)

* Paymasters: Gas Sponsorship Providers
DApps sponsoring their users' transactions
- Token projects enabling ERC-20 gas payments

Enterprise paymasters for B2B blockchain
applications

* Tooling & Infrastructure Providers

SDKs: Alchemy AA SDK, Biconomy SDK,
ZeroDev SDK

Node providers: Alchemy, Infura with AA
support

Testing frameworks: Hardhat plugins, Foundry
integrations

OOST

https://github.com/eth-infinitism/account-abstraction
https://safe.global/
https://www.argent.xyz/
https://soulwallet.io/
https://www.biconomy.io/
https://zerodev.app/
https://stackup.sh/
https://github.com/alchemyplatform/rundler
https://pimlico.io/
https://etherspot.io/skandha
https://docs.alchemy.com/reference/account-abstraction-sdk
https://docs.biconomy.io/
https://docs.zerodev.app/
https://www.infura.io/
https://hardhat.org/
https://getfoundry.sh/

13

Current Adoption & Ecosystem Status

ERC-4337 Production Ready: Live on
Ethereum mainnet since March 2023

Growing Infrastructure: 26+ million smart
accounts deployed, 170+ million
UserOperations processed

Wallet Ecosystem: Safe (41.6M accounts),
Biconomy (3.5M users), ZeroDev Kernel (4M
accounts), Argent on StarkNet

Bundler Market: Stackup (dominant on
Ethereum mainnet), Pimlico (leading overall
bundler), Alchemy Rundler, Etherspot Skandha

Real-world Usage: 99.2% of UserOperations
use paymasters, $430K+ in gas sponsorships

Developer Tools: Mature SDKs from Alchemy,
Biconomy, ZeroDev; comprehensive testing
frameworks

Blockchain

* Challenges & Open Problems

Performance Overhead: 10-15% gas cost increase vs
EOA for individual UserOperations; bundling multiple
operations can reduce costs through amortized
EntryPoint overhead

Infrastructure Maturity: Bundler reputation systems and
mempool standardization still evolving

Centralization Concerns: Market concentration in
bundlers/paymasters creates potential bottlenecks

Security Complexity: Smart contract wallets expand
attack surface requiring extensive audits

User Experience: 1.5x-11.7x slower transaction
propagation compared to EOA flows

Standards Fragmentation: Multiple wallet
implementations create integration complexity for dApps

OOST

Demo / Next steps | Resources

* Next week...

14 | Blockchain O OS T

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

