OST

Eastern Switzerland
University of Applied Sciences

Blockchain (BICh)

Repetition DSy - part 2

Thomas Bocek
19.09.2025

Lecture 7/

2 | Blockchain O OS T

3

Distributed Systems Categorization

“Controlled” Distributed Systems

1 responsible organization
Low churn

Examples:
- Amazon DynamoDB

« Client/server
“Secure environment”
High availability

Can be homogeneous / heterogeneous

Blockchain

“Fully” Decentralized Systems

N responsible organizations
High churn

Examples:
- BitTorrent

« Blockchain
“Hostile environment”
Unpredictable availability

Is heterogeneous

OOST

Distributed Systems Categorization

“Controlled” Distributed Systems “Fully” Decentralized Systems
* Mechanisms that work well: * Mechanisms that work well:
+ Consistent hashing (DynamoDB, Cassandra) « Consistent hashing (DHTSs)
- Master nodes, central coordinator - Flooding/broadcasting - Bitcoin
* Network is under control or client/server - * NAT and direct connectivity huge problem

no NAT issues

4 | Blockchain O OS T

Distributed Systems Categorization

“Controlled” Distributed Systems “Fully” Decentralized Systems
* Consistency * Consistency
Leader election (Zookeeper, Paxos, Raft) * Weak consistency: DHTs

Nakamoto consensus (aka proof of work)

Proof of stake — Leader election, PBFT
protocols - Is Bitcoin eventually consistent?

. . . . — Some argue no, some argue it has even stronger
* Replication principles guarantees

More replicas: higher availability, higher
reliability, higher performance, better
scalability, but: requires maintaining
consistency in replicas

* Replication principles apply to fully
decentralized systems as well

* Transparency principles apply * Transparency principles apply

5 | Blockchain O OST

Distributed Systems Categorization

e Spring Term — Distributed Systems (DSy) e Fall Term — Blockchain (BICh)
- Tightly/loosely coupled * Loosely coupled
Heterogeneous systems - Heterogeneous systems
- Small-scale systems - Large-scale systems
+ Distributed systems - Decentralized systems
(we will also talk about blockchains in this (we will also talk about distributed systems in
lecture) this lecture, but DSy is highly recommended)

6 | Blockchain O OST

Lecture 8

7 | Blockchain O OS T

Access Token | Refresh Token

Access Token only short lifetime, e.qg.,
10min.

- If public key / secret is known, the content in
the token can be trusted, e.g., in the serivce

« Can have userld, role, etc.

— No need to query DB for those information, e.g.:
type TokenClaims struct {

MailFrom string " json:"mail_from,omitempty""’
MailTo string "json:"mail_to,omitempty""
jwt.Claims

}

Refresh Token longer lifetime, e.g., 6 month

- Arefresh token is used to get a new access
token

* |AM / Auth server creates access tokens

* Only access token, with long lifetime

If a user credential is revoked — how to inform
every service?

* Only refresh token

Tightly coupled Service/Auth, every request to
Service, Auth needs to be involved for every
access

e Access + Refresh token

« If a user credential is revoked, user has max.
10min more to access service

- Auth only involved if access token is expired

OOST

Lecture 9

9 | Blockchain O OST

Networking: Layers

* Networking: Each vendor had its own proprietary solution - not compatible with another solution
IPX/SPX — 1983, AppleTalk 1985, DECnet 1975, XNS 1977

* Nowadays most vendors build compatible networks hardware/software from different vendors
Cisco, Dell, HP, Huawei, Juniper, Lenovo, Linksys, Netgear, MicroTik, Siemens, Ubiquiti, etc.

* Goal of layers: interoperability
1984 ISO 7498 - The Basic Reference Model for Open Systems Interconnection

OSI model "Internet model"

Application Application

Presentation

Session

Transport Transport TCP Header
Network Internet IP Header TCP Header
Data link Link Ethernet Header IP Header TCP Header
Pysical

10 | Blockchain O OS T

https://en.wikipedia.org/wiki/IPX/SPX
https://en.wikipedia.org/wiki/AppleTalk
https://en.wikipedia.org/wiki/DECnet
https://en.wikipedia.org/wiki/Xerox_Network_Systems

° Server in golang (repo)

11

TCPIIP from an Application Developer View

* git clone https://github.com/tboce

k/IDSy

 Download GolLand, or others

* g0 run server.go - server

Listening on TCP port 8081

* Return string in uppercase

Node.js version

* Download WebStorm, or other

Client;
* nc localhost 8081

Blockchain

const ‘net');
const new
8081, function
console 'Launching server...");

'connection’, function
'data’, function

console ‘Data received from client:

n\nn ;

package main
import ("bufio"
"fmt"
"net"
"strings")
func main() {
fmt.Println("Launching server...")
In, _ := net.Listen("tcp", ":8081") // listen
on all interfaces
for {
conn, _ := 1n.Accept() // accept connectior
on port
message, _ :=
bufio.NewReader(conn).ReadString('\n') //read line
fmt.Print("Message Received:",
string(message))
newMessage := strings.ToUpper(message)
//change to upper
conn.Write([]byte(newMessage + "\n"))
//send upper string back
}
}

OOST

https://github.com/tbocek/FS21
https://github.com/tbocek/DSy
https://github.com/tbocek/DSy
https://www.jetbrains.com/go/
https://golang.org/doc/editors.html
https://www.jetbrains.com/webstorm/
https://www.credencys.com/blog/ides-for-nodejs-app-development/

PING sydney.edu.au (129.78.5.8) 56(84) bytes
64 bytes from scilearn.sydney.edu.au (129.78
64 bytes from scilearn.sydney.edu.au (129.78
64 bytes from scilearn.sydney.edu.au (129.78

of data.

.5.8): dicmp_seq=1 ttl=233 time=307 ms
.5.8): dicmp_seq=2 ttl=233 time=305 ms
+5+\':i L]

8): icmp_seq=3 ttl=233 time=305 ms

}q-

Layer 4 - TCP + TLS

* Ping to Australia: 329ms

* One way ~ 165ms

* TCP + TLS handshake:
« 3RTT =987ms! No data sent yet

* TLS 1.3, finished Aug 2018

- 1 RTT instead of 2
- 1.) Client Hello, Key Share

- 2.) Server Hello, key Share, Verify Certificate,
Finished

- O RTT possible, for previous connections, loosing
perfect forward secrecy L

* 90% of browsers used already support it

12 |§ Blockchain

https://medium.com/@vanrijn/what-is-new-with-tls-1-3-e991df2caaac
https://caniuse.com/#search=tls%201.3

QUIC | HTTPI3

QUIC: 1RTT connection + security handshake

* For known connections: ORTT

« Built in security - Client Hello s "
e LT - ST Server Hello -

« “Google's 'QUIC' TCP alternative Finished e T T

slow to excite anyone outside g e e App Data

.t YOne DUt App Data S o
Google” [link] (9%, 25%, 75%) l—
- Facebook
Cloudflare, state of HTTP
* Example Australia: from 987ms to 329ms] |

OOST

https://blog.apnic.net/2019/03/04/a-quick-look-at-quic/
https://www.theregister.com/2018/01/17/quic_takeup_is_slow/
https://w3techs.com/technologies/details/ce-quic
https://w3techs.com/technologies/details/ce-http3
https://caniuse.com/?search=http3
https://engineering.fb.com/2022/07/06/networking-traffic/watch-metas-engineers-discuss-quic-and-tcp-innovations-for-our-network/
https://blog.cloudflare.com/landscape-of-api-traffic/
https://blog.cloudflare.com/the-state-of-http-in-2022/

14

QUIC | HTTP3

* Multiplexing in HTTP/2

HTTP/1 - HTTP/2

* HTTP/2: Head-of-line blocking

One packet loss, TCP needs to be ordered

=]

HTTP 1.1

=]

HTTP/2

QUIC can multiplex requests: one stream does not affect

others

* HTTP/3is great, but...

NAT - SYN, ACK, FIN, conntrack
knows when connection ends, not
with QUIC, timeouts, new entries,
many entries

HTTP header compression,
referencing previous headers

Many TCP optimizations

(#1) GE™ b .sspartl

(s1l) GE. b.rspart 1

jquery js
example.css
E image.png

jquery.js
example.css
E image.png

3 TCP Connections

1 TCP Connection

jquery js
example.css
E image.png

jquery.js
example.css
5 image.png

server

server

source: https://blog.cloudflare.com/the-road-to-quic/

(#2) GE)

IS part 1

(#3) GE (92.css part 2

m (s1) CET L.css part 2

OOST

https://blog.cloudflare.com/the-road-to-quic/
https://en.wikipedia.org/wiki/TCP_Fast_Open
https://blog.cloudflare.com/the-road-to-quic/

Lecture 10

15 | Blockchain O OS T

16

Protocols

Custom encoding/decoding
* You control every aspect

* You send more time on it

Little-endian / Big-endian

+ sequential order where bytes are converted
into numbers

Networking, e.g. TCP headers:
Big-endian

Most CPUs e.g., x86:
Little-endian, RISC-V: Bi-endianness

Distributed Systems

public static boolean decodeHeader(final ByteBuf buffer, final InetSocketAddress recipientSocket,

final InetSocketAddress senderSocket, fTinal Message message) {
LOG.debug("Decode message. Recipient: {}, Sender:{}.", recipientSocket, senderSocket),
final int versionAndType = buffer.readInt();
message.version(versionAndType === 47,
message. type(Type.values()[(versionAndType & Utils.MASKE_BF)]);
message. protocolType(ProtocolType.values() [versionAndType === 30]);
message.messageld{buffer.readInt());
final int command = buffer.readUnsignedByte(),
message.command((byte) command),
final Numberi16@ recipientID = NumberiG0.decode(buffer),

Afwe only get the id for the recipient, the rest we already know
final PeerAddress recipient = PeerAddress.builder().peerId{recipientID).build();
message. recipient(recipient);

final int contentTypes = buffer.readInt(),;
message. hasContent(contentTypes = 07,
messace. contentTypes(decodeContentTypes(contentTypes, messagel);

32-hit integer
Memory | OAOBOCOD |
¥ 1
Fil EA -Q—l J |—h- a:(oD
a+1: |0 | -=— a+l:|0cC

32-bit integer
OADBOCOD Memoary

a+2: 0C = a+2{0B
a+3: 0D/ =« = g+3:|0A
e Big-endian Little-endian T
[source]

OST

https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Endianness

Application Protocol: HTTP

e HTTP (HyperText Transfer Protocol): * Text-based protocol
foundation of data communication for www

openssl s_client -connect dsl.i.ost.ch:443 -showcerts
.. TLS handshake ..

e Started in 1989 by Tim Berners-Lee GET /
_ _ HTTP is a stateless protocol
« HTTP/1.1 published in 1997

- HTTP/2 published in 2015
— More efficient, header compression, multiplexing

« Server maintains no state

Browser sends a bit more...

¢ HTTP/3 pUb“Shed IN 2022 w Request Headers (359 B)
Host: dsl.hsr.ch
PY User-Agent: Mozillas5.0 (X¥11; Linux x86_64; rv:73.0) Gecko/20108101 Firefox/73.0
RequeSt/ response (resource) Accept: text/html,application/xhtml+xml, application/xml;q=8.9, image/webp,*/*;g=0.8

Accept-Language: en-Us,en;q=e.5
. . Accept-Encoding: gzip, deflate, br
* HTTP resources identified by URL N 1 ’
connection: keep-alive
Upgrade-Insecure-Requests: 1

- https://dsl.i.ost.ch/design/ost_logo.svg Cache-Control.: max-age=s
Scheme User info Host Port Path Query Fragment

] I] ‘_1_\]] i
| | |] | 1 \! 1
http://tbocek:password@dsl.i.ost.ch:443/lect/fs21?1d=1234&lang=dettopj

17 | Distributed Systems OOST

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

Lecture 12

18 | Blockchain O OS T

Deployment Strategies

* Many strategies and variations
[link, link, link]

* Rolling Deployment

* New version is gradually deployed to replace
the old version - without taking the entire
system down at once

+ Minimal downtime, low risk
- Complexity, longer deployment times

* Blue-Green Deployment

* 2 environments, current prod (blue), current
prod with new release (green). Test, then
switch

+ Instant rollback, O downtime
- 2 prod environments, keep data in sync

19 | Distributed Systems

* Canary Releases

Canary in a coal mine - new version to a small
group of users or servers first, if all goes well,
more users

+ Risk reduction, user feedback
- Complexity, inconsistencies

* Feature Toggle

Fine grained canary, set feature for specific users
+ More risk reduction, specific user feedback

- Increase complexity of codebase, config
management

* Big Bang
Deploy everything at once

+ Simple
- High risk, limited rollback

OOST

https://www.linkedin.com/pulse/path-production-deep-dive-software-deployment-strategies-kelee/
https://medium.com/@maheshsaini.sec/top-5-most-used-deployment-strategies-5d74f8b13b99
https://thenewstack.io/deployment-strategies/

Latency Numbers Every Programmer Should Know

* Interactive [link] from 1990 - 2020 - Latency and throughput important

 Network stays ~ 150ms * Napkin Math [link]
« L1: Ins/ branch miss 3ns — example « Cost

Operation Latency Throughput 1 MiB 1GiB
. Sequential Memory R/W (64 bytes) 0.5ns
e HDD / SSD / NVMe (Non-Volatile Memory _ .
|- Single Thread, No SIMD 10 GiB/s 100ps 100 ms
Express) - comparison, 2 inle Tres, SIWD
]
| Threaded, No SIMD 30 GiB/s 35ps 35ms
| Threaded, SIMD 35 GiB/s 30 us 30ms
Network Same-Zone 10 GiB/s 100 ps 100 ms
I Inside VPC 10 GiB/s 100 ps 100 ms
Outside VPC 3 GiB/ 300 300
NVMe Latency vs. Other Storage Protocols b Ouside s ks | 300ms
Hashing, not crypto-safe (64 bytes) 25ns 2GiB/s 500 ps 500 ms
Random Memory R/W (64 bytes) 50 ns 1GiB/s 1ms 1s
Feature NVMe SATA SSD HDD R :
Fast Serialization 8] (9] T N/A 1GiB/s Tms 1s
Fast D ializati t N/A 1 GiB/: 1 1
Read Latency ~20 ps ~100 ps 2-5ms - o ™=
System Call 500 ns N/A N/A N/A
Write Latency ~30 ps ~200 us 5-10 ms Hashing, crypto-safe (64 bytes) 100ns 1GiB/s Tms s
Sequential SSD read (8 KiB) 1ps 4 GiB/s 200 ps 200 ms
Queue Depth 64K queues x 64K 32 commands 1 command Context Switch G 10s A N/A NA
commands Sequential SSD write, -fsync (8KiB) 10 s 1GiB/s Tms 1s
& TCP Echo Server (32 KiB) 10 ps 4 GiB/s 200ps 200 ms
Bandwidth Up to 16GB/s (PCle 4.0) 600MB/s ~150MB/s
Decompression [11] N/A 1GiB/s Tms 1s
Compression [11] N/A 500 MiB/s 2ms 2s
Sequential SSD write, +fsync (8KiB) 1ms 10 MiB/s 100ms 2min
20 | Distributed Systems Sorting (64-bit integers) N/A 200MiB/s S5ms Ss O S T

Seniiential HNN Read (R KiR) 10 ms 250 MiR/s 2 ms 7

https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://www.simplyblock.io/glossary/nvme-latency/
https://www.serversimply.com/blog/comparing-sas-sata-nvme-and-cxl
https://github.com/sirupsen/napkin-math

Lecture 13

21 | Blockchain O OS T

o @
Introduction ltCOIn
* Bitcoin is an experimental digital currency |

* Bitcoin is fully peer-2-peer (no central entity)

* 1st Bitcoin issued on January 3, 2009
* Smallest unit: 0.00000001 BTC (1 satoshi)

draft@home: /scratch/bitcoin/blocks

* Key characteristics
* Maximum of ~21 million BTC

* Every transaction broadcast to all peers
— Every peers knows all transactions (~660 GByte as of

today) .
* Validation by proof-of-work (partial hash collision) - > o _ Ik
— Difficult to fake proof-of-work 000000¢0 61 99 6¢ OF 79 74 20 G0 of 72 26 ¢ 6b 73 |allout
— No double-spending 00600670 5¢ 40 36 28 cb 30 09 a6 79 62 0 oo 1f 61 e b6 [\..(9.

°* The initiator is unknown so far

22 | Distributed Systems OST

https://github.com/bitcoin/bitcoin/blob/3edf400b1020d7b88402ebc0e758b1fad2e7a781/src/validation.cpp#L1942
https://en.bitcoin.it/wiki/Controlled_supply
https://www.blockchain.com/charts/blocks-size

Bitcoin - Introduction
* Not relying on trust, but on strong cryptography

Weak anonymity (pseudonimity)
* All peers know all transactions

* Clustering: e.g. if a transaction has multiple input addresses, assume those addresses belong to the
same wallet. (example)

Not controlled by a single entity
Development community, no central bank — forks — Bitcoin Cash, SV

BIP: Bitcoin Improvement Proposals

Bitcoins can be exchange for real currencies
* Several companies allow to exchange BTC for Dollar, Euro, ...

US, CH considered Bitcoin friendly, China (energy) not that much

23 | Distributed Systems O OST

https://medium.com/bitaccess-inc/bitcoin-users-reveal-more-private-information-than-they-realize-d783f0cd57f3#.go48v1of6
https://www.walletexplorer.com/
https://github.com/bitcoin/bips
https://www.reuters.com/article/us-crypto-currency-china-idUSKCN2AT201
https://www.nasdaq.com/articles/bitcoin-mining-hash-rate-drops-as-blackouts-instituted-in-china-2021-04-16

Mechanism

* A wallet has public-private keys (wallet.dat)
* Public key, ECDSA 256 bit - Bitcoin address (can receive bitcoins)

* Simple address ~ base58(RIPEM160(Sha256(ecdsa public key)))
- E.g. 1GCeaKuhDYNNLNR6LGmMBtKhPgEJD4KeEtF

* Private key used for signing transactions

* Transaction
* Peer Awants to send BTC to peer B - creates transaction message

* Transaction contains input / output
- where the BTC came from and where it goes

* Peer A broadcasts the transaction to all the peers in the network

* Transaction stored in blocks — block is created / verified ~10min

24 | Distributed Systems O OST

Key Bitcoin Operations

* Private key authorizes the transaction (“access”)
* If keys are stolen, thief may use “your” coins
* If keys are lost, coins are lost

* In UTXO (unspent transaction output) systems, complete output is spent

ing 10 BT

ally ally
13EaY4rpuLXRYXgCdJFsywoh6x2NhrkRKH 0.2234 1VosGaz8iwowvkuc54rjMucf36cMpL7P6
INdWxTX4911GKvJI6fbWhfdjHMfVKEX2LBF 3.24 196gDJzJ8aZh4F2NuVJIwpiJ6NktIndG2ju
16mx1UyNbBwzouf4fXRn6iiJFHqS4DdmDq 4.4
1EZxCiRSwt9rewAjnYNtadJQBPr5KG6Htz 5.6
From: 16mx1UyNbBwzouf4fXRn6iiJFHqS4DdmDq 4.4
From: 1EZxCiRSwt9rewAjnYNtadJQBPrs5KG6Htz 5.6
To: 196gDJzJ8azh4F2NuVJIwpiJ6NktIndG2ju 10

25 | Distributed Systems
Sign with Private Key of User A

20.44

10

OOST

Transactions

Transaction A

S
; H LE R L L
input

Bitcoin Transactions

Transaction C

:
v

input

FREEEEqEsEEe
piEEEEE Fa s EEy

input

{change]
9.23191
output

Transaction D

input

]

3.12009
output

- 6.102
E i output
e input [T
L]
Transaction B
625 EET T TRy 615
generation output

26 | Distributed Systems

https://en.bitcoin.it/wiki/Transaction

OST

https://en.bitcoin.it/wiki/Transaction

Blockchain

* Transactions are collected in blocks

* New block created approximately every 10 min

* Blocks contain
solved crypto puzzles

* In the form of partial hash collisions (SHA256)

* Ablock has a pointer to previous block -
Blockchain

* Creation of blocks is called mining (reward)

* Mining / creating blocks — Miner get currently
3.125 BTC per creation
adjustable difficulty 6 blocks / h

Sometime in 2028 reward will be 1.5625

27 | Distributed Systems

-)
Block 4712
/ Proof of work
Block 4712 000000jazh678 -
/ \ Proof of work Previous block
Block 4711 000000zhsg56p > 000000zhsg56p
Proof of work Previous block
000000ftz67zw > 000000ftz67zw Transaction
Previous block Tahzsgrb
{» 000000gztr56a Transaction Transaction
. hsjuet67 pahejros
Transaction Transaction k /)
6sakthth hategof8
Transaction
s67dhaj9 N
- %

OOST

https://dsl.i.ost.ch/lect/bl/hash.html
https://dsl.i.ost.ch/lect/bl/block.html
https://dsl.i.ost.ch/lect/bl/
https://en.bitcoin.it/wiki/Difficulty

Discussion (1)
* Disadvantages

* Power consumption
~ as much as Poland

* Not scalable

- Bitcoin with ~7 tps vs. VISA 57,000 tps (23.12)
[tps: transactions per sec]

* Anonymity
- Can be used for illegal activities

28 | Distributed Systems

Advantages
* Low (fixed) tx fees

~1.2 satoshi per byte / 0.25USD (~200bytes tx)

Scalable

Hardware/storage gets faster

anonymous marketplace

* Anonymity

Preserving privacy

OOST

https://digiconomist.net/bitcoin-energy-consumption/
https://bitbo.io/tools/fee-calculator/

Discussion (2)
* Advantages * Disadvantages

* No major “crashes”

- Mt.Gox / FTX was exchange site! » Volatile eXChange rate

* Decentralized

- Open protocol 2
- Forks GO

£ www.coindesk.com

B
. //

B
T °
Central elemements

\. / \ - Core developers @
/\) - H H
Mining farms [link] @\

@
\

* Many other blockchain use cases /

- Smart contracts

29 | Distributed Systems O OST

https://en.wikipedia.org/wiki/Mt._Gox
https://youtu.be/f0HC1Udk6-E?t=189

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Access Token / Refresh Token (2)
	Slide 9
	Networking: Layers
	TCP/IP from an Application Developer View
	Layer 4 – TCP + TLS (2)
	QUIC
	QUIC (2)
	Slide 15
	Protocols (2)
	Application Protocol: HTTP
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Introduction
	Bitcoin - Introduction
	Mechanism
	Key Bitcoin Operations
	Mechanism (2)
	Blockchain
	Discussion (1)
	Discussion (2)

