
19.09.2025

Blockchain (BlCh)
Repetition DSy – part 2

Thomas Bocek

Blockchain2

Lecture 7

Blockchain3

Distributed Systems Categorization
“Controlled” Distributed Systems

● 1 responsible organization

● Low churn

● Examples:
● Amazon DynamoDB

● Client/server

● “Secure environment”

● High availability

● Can be homogeneous / heterogeneous

“Fully” Decentralized Systems

● N responsible organizations

● High churn

● Examples:
● BitTorrent

● Blockchain

● “Hostile environment”

● Unpredictable availability

● Is heterogeneous

Blockchain4

Distributed Systems Categorization
“Controlled” Distributed Systems

● Mechanisms that work well:
● Consistent hashing (DynamoDB, Cassandra)

● Master nodes, central coordinator

● Network is under control or client/server →
no NAT issues

“Fully” Decentralized Systems

● Mechanisms that work well:
● Consistent hashing (DHTs)

● Flooding/broadcasting - Bitcoin

● NAT and direct connectivity huge problem

Blockchain5

Distributed Systems Categorization
“Controlled” Distributed Systems

● Consistency
● Leader election (Zookeeper, Paxos, Raft)

● Replication principles
● More replicas: higher availability, higher

reliability, higher performance, better
scalability, but: requires maintaining
consistency in replicas

● Transparency principles apply

“Fully” Decentralized Systems

● Consistency
● Weak consistency: DHTs
● Nakamoto consensus (aka proof of work)
● Proof of stake – Leader election, PBFT

protocols - Is Bitcoin eventually consistent?
— Some argue no, some argue it has even stronger

guarantees

● Replication principles apply to fully
decentralized systems as well

● Transparency principles apply

Blockchain6

Distributed Systems Categorization
● Spring Term – Distributed Systems (DSy)

● Tightly/loosely coupled

● Heterogeneous systems

● Small-scale systems

● Distributed systems

(we will also talk about blockchains in this
lecture)

● Fall Term – Blockchain (BlCh)

● Loosely coupled

● Heterogeneous systems

● Large-scale systems

● Decentralized systems

(we will also talk about distributed systems in
this lecture, but DSy is highly recommended)

Blockchain7

Lecture 8

8

Access Token / Refresh Token
● Access Token only short lifetime, e.g.,

10min.
● If public key / secret is known, the content in

the token can be trusted, e.g., in the serivce

● Can have userId, role, etc.
— No need to query DB for those information, e.g.:

● Refresh Token longer lifetime, e.g., 6 month
● A refresh token is used to get a new access

token

● IAM / Auth server creates access tokens

● Only access token, with long lifetime
● If a user credential is revoked – how to inform

every service?

● Only refresh token
● Tightly coupled Service/Auth, every request to

Service, Auth needs to be involved for every
access

● Access + Refresh token
● If a user credential is revoked, user has max.

10min more to access service

● Auth only involved if access token is expired

type TokenClaims struct {
MailFrom string `json:"mail_from,omitempty"`
MailTo string `json:"mail_to,omitempty"`
jwt.Claims

}

Blockchain9

Lecture 9

Blockchain10

Networking: Layers
● Networking: Each vendor had its own proprietary solution - not compatible with another solution

● IPX/SPX – 1983, AppleTalk 1985, DECnet 1975, XNS 1977
● Nowadays most vendors build compatible networks hardware/software from different vendors

● Cisco, Dell, HP, Huawei, Juniper, Lenovo, Linksys, Netgear, MicroTik, Siemens, Ubiquiti, etc.
● Goal of layers: interoperability

● 1984: ISO 7498 - The Basic Reference Model for Open Systems Interconnection

OSI model

Application

Presentation

Session

Transport

Network

Data link

Pysical

"Internet model"

Application

Transport

Internet

Link

Data

DataTCP Header

DataTCP HeaderIP Header

DataTCP HeaderIP HeaderEthernet Header

https://en.wikipedia.org/wiki/IPX/SPX
https://en.wikipedia.org/wiki/AppleTalk
https://en.wikipedia.org/wiki/DECnet
https://en.wikipedia.org/wiki/Xerox_Network_Systems

Blockchain11

TCP/IP from an Application Developer View
● Server in golang (repo)

● git clone https://github.com/tboce
k/DSy

● Download GoLand, or others

● go run server.go → server

● Listening on TCP port 8081
● Return string in uppercase

● Node.js version
● Download WebStorm, or other

● Client:
● nc localhost 8081

package main
import ("bufio"
 "fmt"
 "net"
 "strings")
func main() {
 fmt.Println("Launching server...")
 ln, _ := net.Listen("tcp", ":8081") // listen
on all interfaces
 for {
 conn, _ := ln.Accept() // accept connection
on port
 message, _ :=
bufio.NewReader(conn).ReadString('\n') //read line
 fmt.Print("Message Received:",
string(message))
 newMessage := strings.ToUpper(message)
//change to upper
 conn.Write([]byte(newMessage + "\n"))
//send upper string back
 }
}

const net = require('net');
const server = new net.Server();
server.listen(8081, function() {
 console.log('Launching server...');
});

server.on('connection', function(socket) {
 socket.on('data', function(chunk) {
 console.log(`Data received from client: $
{chunk.toString()}`);

socket.write(chunk.toString().toUpperCase() +
"\n");
 });
});

https://github.com/tbocek/FS21
https://github.com/tbocek/DSy
https://github.com/tbocek/DSy
https://www.jetbrains.com/go/
https://golang.org/doc/editors.html
https://www.jetbrains.com/webstorm/
https://www.credencys.com/blog/ides-for-nodejs-app-development/

Blockchain12

Layer 4 – TCP + TLS
• Ping to Australia: 329ms

• One way ~ 165ms

• TCP + TLS handshake:

• 3RTT = 987ms! No data sent yet

• TLS 1.3, finished Aug 2018
- 1 RTT instead of 2

- 1.) Client Hello, Key Share

- 2.) Server Hello, key Share, Verify Certificate,
Finished

- 0 RTT possible, for previous connections, loosing
perfect forward secrecy

• 90% of browsers used already support it

SYN/ACK
SYN/ACK

ACK

1.) 2.)
App Data

App Data

https://medium.com/@vanrijn/what-is-new-with-tls-1-3-e991df2caaac
https://caniuse.com/#search=tls%201.3

QUIC / HTTP/3
• QUIC: 1RTT connection + security handshake

• For known connections: 0RTT

• Built in security

• “Google's 'QUIC' TCP alternative
slow to excite anyone outside
Google” [link] (9%, 25%, 75%)

- Facebook

- Cloudflare, state of HTTP

• Example Australia: from 987ms to 329ms

Server Hello

Client Hello

Finished

App Data
App Data

Param
Param

https://blog.apnic.net/2019/03/04/a-quick-look-at-quic/
https://www.theregister.com/2018/01/17/quic_takeup_is_slow/
https://w3techs.com/technologies/details/ce-quic
https://w3techs.com/technologies/details/ce-http3
https://caniuse.com/?search=http3
https://engineering.fb.com/2022/07/06/networking-traffic/watch-metas-engineers-discuss-quic-and-tcp-innovations-for-our-network/
https://blog.cloudflare.com/landscape-of-api-traffic/
https://blog.cloudflare.com/the-state-of-http-in-2022/

14

QUIC / HTTP3
• Multiplexing in HTTP/2

• HTTP/1 → HTTP/2

• HTTP/2: Head-of-line blocking

• One packet loss, TCP needs to be ordered

• QUIC can multiplex requests: one stream does not affect
others

• HTTP/3 is great, but…

• NAT → SYN, ACK, FIN, conntrack
knows when connection ends, not
with QUIC, timeouts, new entries,
many entries

• HTTP header compression,
referencing previous headers

• Many TCP optimizations

(#1) GET b.css part 1 (#2) GET a.js part 1 (#3) GET b.css part 2

(s1) GET b.css part 1 (s2) GET a.js part 1 (s1) GET b.css part 2

source: https://blog.cloudflare.com/the-road-to-quic/

https://blog.cloudflare.com/the-road-to-quic/
https://en.wikipedia.org/wiki/TCP_Fast_Open
https://blog.cloudflare.com/the-road-to-quic/

Blockchain15

Lecture 10

Distributed Systems16

Protocols
● Custom encoding/decoding

● You control every aspect

● You send more time on it

● Little-endian / Big-endian
● sequential order where bytes are converted

into numbers

● Networking, e.g. TCP headers:
Big-endian

● Most CPUs e.g., x86:
Little-endian, RISC-V: Bi-endianness

[source]

https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Endianness

Distributed Systems17

Application Protocol: HTTP
● HTTP (HyperText Transfer Protocol):

foundation of data communication for www

● Started in 1989 by Tim Berners-Lee
● HTTP/1.1 published in 1997

● HTTP/2 published in 2015
— More efficient, header compression, multiplexing

● HTTP/3 published in 2022

● Request / response (resource)

● HTTP resources identified by URL
● https://dsl.i.ost.ch/design/ost_logo.svg

● Text-based protocol

● HTTP is a stateless protocol
● Server maintains no state

● Browser sends a bit more…

openssl s_client -connect dsl.i.ost.ch:443 -showcerts
… TLS handshake …
GET /

http://tbocek:password@dsl.i.ost.ch:443/lect/fs21?id=1234&lang=de#topj

Scheme User info Host Port Path Query Fragment

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

Blockchain18

Lecture 12

Distributed Systems19

Deployment Strategies
● Many strategies and variations

[link, link, link]
● Rolling Deployment

● New version is gradually deployed to replace
the old version - without taking the entire
system down at once

+ Minimal downtime, low risk

- Complexity, longer deployment times

● Blue-Green Deployment
● 2 environments, current prod (blue), current

prod with new release (green). Test, then
switch

+ Instant rollback, 0 downtime

- 2 prod environments, keep data in sync

● Canary Releases
● Canary in a coal mine - new version to a small

group of users or servers first, if all goes well,
more users

+ Risk reduction, user feedback

- Complexity, inconsistencies

● Feature Toggle
● Fine grained canary, set feature for specific users

+ More risk reduction, specific user feedback

- Increase complexity of codebase, config
management

● Big Bang
● Deploy everything at once

+ Simple

- High risk, limited rollback

https://www.linkedin.com/pulse/path-production-deep-dive-software-deployment-strategies-kelee/
https://medium.com/@maheshsaini.sec/top-5-most-used-deployment-strategies-5d74f8b13b99
https://thenewstack.io/deployment-strategies/

Distributed Systems20

Latency Numbers Every Programmer Should Know
● Interactive [link] from 1990 - 2020

● Network stays ~ 150ms

● L1: 1ns / branch miss 3ns – example

● HDD / SSD / NVMe (Non-Volatile Memory
Express) - comparison, 2

● Latency and throughput important

● Napkin Math [link]
● Cost

https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://www.simplyblock.io/glossary/nvme-latency/
https://www.serversimply.com/blog/comparing-sas-sata-nvme-and-cxl
https://github.com/sirupsen/napkin-math

Blockchain21

Lecture 13

Distributed Systems22

Introduction
● Bitcoin is an experimental digital currency

● Bitcoin is fully peer-2-peer (no central entity)
● 1st Bitcoin issued on January 3, 2009
● Smallest unit: 0.00000001 BTC (1 satoshi)

● Key characteristics
● Maximum of ~21 million BTC
● Every transaction broadcast to all peers

— Every peers knows all transactions (~660 GByte as of
today)

● Validation by proof-of-work (partial hash collision)
— Difficult to fake proof-of-work
— No double-spending

● The initiator is unknown so far

https://github.com/bitcoin/bitcoin/blob/3edf400b1020d7b88402ebc0e758b1fad2e7a781/src/validation.cpp#L1942
https://en.bitcoin.it/wiki/Controlled_supply
https://www.blockchain.com/charts/blocks-size

Distributed Systems23

Bitcoin - Introduction
● Not relying on trust, but on strong cryptography
● Weak anonymity (pseudonimity)

● All peers know all transactions
● Clustering: e.g. if a transaction has multiple input addresses, assume those addresses belong to the

same wallet. (example)

● Not controlled by a single entity
● Development community, no central bank – forks – Bitcoin Cash, SV

● BIP: Bitcoin Improvement Proposals
● Bitcoins can be exchange for real currencies

● Several companies allow to exchange BTC for Dollar, Euro, …

● US, CH considered Bitcoin friendly, China (energy) not that much

https://medium.com/bitaccess-inc/bitcoin-users-reveal-more-private-information-than-they-realize-d783f0cd57f3#.go48v1of6
https://www.walletexplorer.com/
https://github.com/bitcoin/bips
https://www.reuters.com/article/us-crypto-currency-china-idUSKCN2AT201
https://www.nasdaq.com/articles/bitcoin-mining-hash-rate-drops-as-blackouts-instituted-in-china-2021-04-16

Distributed Systems24

Mechanism
• A wallet has public-private keys (wallet.dat)

• Public key, ECDSA 256 bit → Bitcoin address (can receive bitcoins)

• Simple address ~ base58(RIPEM160(Sha256(ecdsa public key)))
- E.g. 1GCeaKuhDYnNLNR6LGmBtKhPqEJD4KeEtF

• Private key used for signing transactions

• Transaction
• Peer A wants to send BTC to peer B → creates transaction message

• Transaction contains input / output
- where the BTC came from and where it goes

• Peer A broadcasts the transaction to all the peers in the network

• Transaction stored in blocks → block is created / verified ~10min

Distributed Systems25

Key Bitcoin Operations
• Private key authorizes the transaction (“access“)

• If keys are stolen, thief may use “your” coins

• If keys are lost, coins are lost

• In UTXO (unspent transaction output) systems, complete output is spent
paying 10 BTC

Wallet

13EaY4rpuLXRYXgCdJFsywoh6x2NhrkRKH 0.2234 1VosGaZ8iwowvkuc54rjMucf36cMpL7P6 20.44

1NdWxTX4911GKvJ6fbWhfdjHMfVkEX2LBF 3.24

16mx1UyNbBwzouf4fXRn6iiJFHqS4DdmDq 4.4

1EZxCiRSwt9rewAjnYNtadJQBPr5KG6Htz 5.6

Wallet

196gDJzJ8aZh4F2NuVJwpiJ6NktJndG2ju 0

Transaction

From: 16mx1UyNbBwzouf4fXRn6iiJFHqS4DdmDq 4.4

From: 1EZxCiRSwt9rewAjnYNtadJQBPr5KG6Htz 5.6

To: 196gDJzJ8aZh4F2NuVJwpiJ6NktJndG2ju 10

Sign with Private Key of User A

User A User B

10

Distributed Systems26

Transactions

ht
tp

s:
//e

n.
bi

tc
oi

n.
it/

w
ik

i/T
ra

ns
ac

tio
n

https://en.bitcoin.it/wiki/Transaction

Distributed Systems27

Blockchain
• Transactions are collected in blocks

• New block created approximately every 10 min

• Blocks contain
solved crypto puzzles
• In the form of partial hash collisions (SHA256)

● A block has a pointer to previous block →
Blockchain

• Creation of blocks is called mining (reward)
• Mining / creating blocks → Miner get currently

3.125 BTC per creation
- adjustable difficulty 6 blocks / h
- Sometime in 2028 reward will be 1.5625

https://dsl.i.ost.ch/lect/bl/hash.html
https://dsl.i.ost.ch/lect/bl/block.html
https://dsl.i.ost.ch/lect/bl/
https://en.bitcoin.it/wiki/Difficulty

Distributed Systems28

• Disadvantages
• Power consumption

- ~ as much as Poland

• Not scalable
- Bitcoin with ~7 tps vs. VISA 57,000 tps (23.12)

[tps: transactions per sec]

• Anonymity
- Can be used for illegal activities

Discussion (1)
• Advantages

• Low (fixed) tx fees
- ~1.2 satoshi per byte / 0.25USD (~200bytes tx)

• Scalable
- Hardware/storage gets faster

• Anonymity
- Preserving privacy

Off-lin
e

https://digiconomist.net/bitcoin-energy-consumption/
https://bitbo.io/tools/fee-calculator/

Distributed Systems29

Discussion (2)
• Advantages

• No major “crashes”
- Mt.Gox / FTX was exchange site!

• Decentralized
- Open protocol
- Forks

• Many other blockchain use cases
- Smart contracts

• Disadvantages

• Volatile exchange rate

• Central elemements

- Core developers

- Mining farms [link]

https://en.wikipedia.org/wiki/Mt._Gox
https://youtu.be/f0HC1Udk6-E?t=189

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Access Token / Refresh Token (2)
	Slide 9
	Networking: Layers
	TCP/IP from an Application Developer View
	Layer 4 – TCP + TLS (2)
	QUIC
	QUIC (2)
	Slide 15
	Protocols (2)
	Application Protocol: HTTP
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Introduction
	Bitcoin - Introduction
	Mechanism
	Key Bitcoin Operations
	Mechanism (2)
	Blockchain
	Discussion (1)
	Discussion (2)

