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Distributed Systems Categorization
“Controlled” Distributed Systems

● 1 responsible organization

● Low churn

● Examples:
● Amazon DynamoDB

● Client/server

● “Secure environment”

● High availability

● Can be homogeneous / heterogeneous

“Fully” Decentralized Systems

● N responsible organizations

● High churn

● Examples:
● BitTorrent

● Blockchain

● “Hostile environment”

● Unpredictable availability

● Is heterogeneous
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Distributed Systems Categorization
“Controlled” Distributed Systems

● Mechanisms that work well:
● Consistent hashing (DynamoDB, Cassandra)

● Master nodes, central coordinator

● Network is under control or client/server → 
no NAT issues

“Fully” Decentralized Systems

● Mechanisms that work well:
● Consistent hashing (DHTs)

● Flooding/broadcasting - Bitcoin

● NAT and direct connectivity huge problem
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Distributed Systems Categorization
“Controlled” Distributed Systems

● Consistency
● Leader election (Zookeeper, Paxos, Raft)

● Replication principles
● More replicas: higher availability, higher 

reliability, higher performance, better 
scalability, but: requires maintaining 
consistency in replicas

● Transparency principles apply

“Fully” Decentralized Systems

● Consistency 
● Weak consistency: DHTs
● Nakamoto consensus (aka proof of work)
● Proof of stake – Leader election, PBFT 

protocols - Is Bitcoin eventually consistent? 
— Some argue no, some argue it has even stronger 

guarantees

● Replication principles apply to fully 
decentralized systems as well

● Transparency principles apply
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Distributed Systems Categorization
● Spring Term – Distributed Systems (DSy)

● Tightly/loosely coupled

● Heterogeneous systems

● Small-scale systems

● Distributed systems

(we will also talk about blockchains in this 
lecture)

● Fall Term – Blockchain (BlCh)

● Loosely coupled

● Heterogeneous systems

● Large-scale systems

● Decentralized systems

(we will also talk about distributed systems in 
this lecture, but DSy is highly recommended)
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Access Token / Refresh Token
● Access Token only short lifetime, e.g., 

10min.
● If public key / secret is known, the content in 

the token can be trusted, e.g., in the serivce

● Can have userId, role, etc. 
— No need to query DB for those information, e.g.: 

● Refresh Token longer lifetime, e.g., 6 month
● A refresh token is used to get a new access 

token 

● IAM / Auth server creates access tokens

● Only access token, with long lifetime
● If a user credential is revoked – how to inform 

every service?

● Only refresh token
● Tightly coupled Service/Auth, every request to 

Service, Auth needs to be involved for every 
access

● Access + Refresh token
● If a user credential is revoked, user has max. 

10min more to access service

● Auth only involved if access token is expired

type TokenClaims struct {
MailFrom string `json:"mail_from,omitempty"`
MailTo   string `json:"mail_to,omitempty"`
jwt.Claims

}
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Networking: Layers
● Networking: Each vendor had its own proprietary solution -  not compatible with another solution

● IPX/SPX – 1983, AppleTalk 1985, DECnet 1975, XNS 1977
● Nowadays most vendors build compatible networks hardware/software from different vendors

● Cisco, Dell, HP, Huawei, Juniper, Lenovo, Linksys, Netgear, MicroTik, Siemens, Ubiquiti, etc.
● Goal of layers: interoperability

● 1984: ISO 7498 - The Basic Reference Model for Open Systems Interconnection

OSI model

Application
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Session

Transport

Network

Data link

Pysical

"Internet model"

Application

Transport

Internet

Link

Data

DataTCP Header

DataTCP HeaderIP Header

DataTCP HeaderIP HeaderEthernet Header

https://en.wikipedia.org/wiki/IPX/SPX
https://en.wikipedia.org/wiki/AppleTalk
https://en.wikipedia.org/wiki/DECnet
https://en.wikipedia.org/wiki/Xerox_Network_Systems
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TCP/IP from an Application Developer View
● Server in golang (repo)

● git clone https://github.com/tboce
k/DSy

● Download GoLand, or others

● go run server.go → server

● Listening on TCP port 8081
● Return string in uppercase

● Node.js version
● Download WebStorm, or other

● Client: 
● nc localhost 8081

package main
import ("bufio"
    "fmt"
    "net"
    "strings")
func main() {
    fmt.Println("Launching server...")
    ln, _ := net.Listen("tcp", ":8081") // listen 
on all interfaces
    for {    
        conn, _ := ln.Accept() // accept connection 
on port
        message, _ := 
bufio.NewReader(conn).ReadString('\n') //read line
        fmt.Print("Message Received:", 
string(message))
        newMessage := strings.ToUpper(message) 
//change to upper
        conn.Write([]byte(newMessage + "\n")) 
//send upper string back
    }
}

const net = require('net');
const server = new net.Server();
server.listen(8081, function() {
    console.log('Launching server...');
});

server.on('connection', function(socket) {
    socket.on('data', function(chunk) {
        console.log(`Data received from client: $
{chunk.toString()}`);
        
socket.write(chunk.toString().toUpperCase() + 
"\n");
    });
});

https://github.com/tbocek/FS21
https://github.com/tbocek/DSy
https://github.com/tbocek/DSy
https://www.jetbrains.com/go/
https://golang.org/doc/editors.html
https://www.jetbrains.com/webstorm/
https://www.credencys.com/blog/ides-for-nodejs-app-development/
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Layer 4 – TCP + TLS
• Ping to Australia: 329ms

• One way ~ 165ms

• TCP + TLS handshake:

• 3RTT = 987ms! No data sent yet

• TLS 1.3, finished Aug 2018
- 1 RTT instead of 2

- 1.) Client Hello, Key Share

- 2.) Server Hello, key Share, Verify Certificate, 
Finished

- 0 RTT possible, for previous connections, loosing 
perfect forward secrecy

• 90% of browsers used already support it

SYN/ACK
SYN/ACK

ACK

1.) 2.)
App Data

App Data

https://medium.com/@vanrijn/what-is-new-with-tls-1-3-e991df2caaac
https://caniuse.com/#search=tls%201.3


QUIC / HTTP/3
• QUIC: 1RTT connection + security handshake

• For known connections: 0RTT

• Built in security

• “Google's 'QUIC' TCP alternative 
slow to excite anyone outside 
Google” [link] (9%, 25%, 75%)

- Facebook

- Cloudflare, state of HTTP

• Example Australia: from 987ms to 329ms

Server Hello

Client Hello

Finished

App Data
App Data

Param
Param

https://blog.apnic.net/2019/03/04/a-quick-look-at-quic/
https://www.theregister.com/2018/01/17/quic_takeup_is_slow/
https://w3techs.com/technologies/details/ce-quic
https://w3techs.com/technologies/details/ce-http3
https://caniuse.com/?search=http3
https://engineering.fb.com/2022/07/06/networking-traffic/watch-metas-engineers-discuss-quic-and-tcp-innovations-for-our-network/
https://blog.cloudflare.com/landscape-of-api-traffic/
https://blog.cloudflare.com/the-state-of-http-in-2022/
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QUIC / HTTP3
• Multiplexing in HTTP/2

• HTTP/1 →  HTTP/2

• HTTP/2: Head-of-line blocking

• One packet loss, TCP needs to be ordered

• QUIC can multiplex requests: one stream does not affect 
others

• HTTP/3 is great, but…

• NAT → SYN, ACK, FIN, conntrack
knows when connection ends, not
with QUIC, timeouts, new entries,
many entries

• HTTP header compression, 
referencing previous headers

• Many TCP optimizations

(#1) GET b.css part 1 (#2) GET a.js part 1 (#3) GET b.css part 2

(s1) GET b.css part 1 (s2) GET a.js part 1 (s1) GET b.css part 2

source: https://blog.cloudflare.com/the-road-to-quic/ 

https://blog.cloudflare.com/the-road-to-quic/
https://en.wikipedia.org/wiki/TCP_Fast_Open
https://blog.cloudflare.com/the-road-to-quic/
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Protocols
● Custom encoding/decoding

● You control every aspect

● You send more time on it

● Little-endian / Big-endian
● sequential order where bytes are converted 

into numbers

● Networking, e.g. TCP headers: 
Big-endian

● Most CPUs e.g., x86: 
Little-endian, RISC-V: Bi-endianness

[source]

https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Endianness
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Application Protocol: HTTP
● HTTP (HyperText Transfer Protocol): 

foundation of data communication for www

● Started in 1989 by Tim Berners-Lee
● HTTP/1.1 published in 1997

● HTTP/2 published in 2015
— More efficient, header compression, multiplexing

● HTTP/3 published in 2022

● Request / response (resource)

● HTTP resources identified by URL
● https://dsl.i.ost.ch/design/ost_logo.svg

● Text-based protocol

● HTTP is a stateless protocol
● Server maintains no state

● Browser sends a bit more…

openssl s_client -connect dsl.i.ost.ch:443 -showcerts
… TLS handshake …
GET /

http://tbocek:password@dsl.i.ost.ch:443/lect/fs21?id=1234&lang=de#topj

Scheme User info Host Port Path Query Fragment

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
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Deployment Strategies
● Many strategies and variations 

[link, link, link]
● Rolling Deployment

● New version is gradually deployed to replace 
the old version - without taking the entire 
system down at once

+ Minimal downtime, low risk

- Complexity, longer deployment times

● Blue-Green Deployment
● 2 environments, current prod (blue), current 

prod with new release (green). Test, then 
switch

+ Instant rollback, 0 downtime

- 2 prod environments, keep data in sync

● Canary Releases
● Canary in a coal mine - new version to a small 

group of users or servers first, if all goes well, 
more users

+ Risk reduction, user feedback

- Complexity, inconsistencies

● Feature Toggle
● Fine grained canary, set feature for specific users

+ More risk reduction, specific user feedback

- Increase complexity of codebase, config 
management

● Big Bang
● Deploy everything at once

+ Simple

- High risk, limited rollback

https://www.linkedin.com/pulse/path-production-deep-dive-software-deployment-strategies-kelee/
https://medium.com/@maheshsaini.sec/top-5-most-used-deployment-strategies-5d74f8b13b99
https://thenewstack.io/deployment-strategies/
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Latency Numbers Every Programmer Should Know
● Interactive [link] from 1990 - 2020

● Network stays ~ 150ms

● L1: 1ns / branch miss 3ns – example

● HDD / SSD / NVMe (Non-Volatile Memory 
Express) - comparison, 2

● Latency and throughput important

● Napkin Math [link]
● Cost

https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://www.simplyblock.io/glossary/nvme-latency/
https://www.serversimply.com/blog/comparing-sas-sata-nvme-and-cxl
https://github.com/sirupsen/napkin-math
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Introduction
● Bitcoin is an experimental digital currency

● Bitcoin is fully peer-2-peer (no central entity)
● 1st  Bitcoin issued on January 3, 2009
● Smallest unit: 0.00000001 BTC (1 satoshi)

● Key characteristics
● Maximum of ~21 million BTC
● Every transaction broadcast to all peers

— Every peers knows all transactions (~660 GByte as of 
today)

● Validation by proof-of-work (partial hash collision)
— Difficult to fake proof-of-work
— No double-spending

● The initiator is unknown so far

https://github.com/bitcoin/bitcoin/blob/3edf400b1020d7b88402ebc0e758b1fad2e7a781/src/validation.cpp#L1942
https://en.bitcoin.it/wiki/Controlled_supply
https://www.blockchain.com/charts/blocks-size
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Bitcoin - Introduction
● Not relying on trust, but on strong cryptography
● Weak anonymity (pseudonimity)

● All peers know all transactions 
● Clustering: e.g. if a transaction has multiple input addresses, assume those addresses belong to the 

same wallet. (example)

● Not controlled by a single entity
● Development community, no central bank – forks – Bitcoin Cash, SV

● BIP: Bitcoin Improvement Proposals
● Bitcoins can be exchange for real currencies

● Several companies allow to exchange BTC for Dollar, Euro, …

● US, CH considered Bitcoin friendly, China (energy) not that much

https://medium.com/bitaccess-inc/bitcoin-users-reveal-more-private-information-than-they-realize-d783f0cd57f3#.go48v1of6
https://www.walletexplorer.com/
https://github.com/bitcoin/bips
https://www.reuters.com/article/us-crypto-currency-china-idUSKCN2AT201
https://www.nasdaq.com/articles/bitcoin-mining-hash-rate-drops-as-blackouts-instituted-in-china-2021-04-16
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Mechanism
• A wallet has public-private keys (wallet.dat)

• Public key, ECDSA 256 bit → Bitcoin address (can receive bitcoins)

• Simple address ~ base58(RIPEM160(Sha256(ecdsa public key)))
- E.g. 1GCeaKuhDYnNLNR6LGmBtKhPqEJD4KeEtF

• Private key used for signing transactions

• Transaction
• Peer A wants to send BTC to peer B → creates transaction message

• Transaction contains input / output 
- where the BTC came from and where it goes

• Peer A broadcasts the transaction to all the peers in the network

• Transaction stored in blocks → block is created / verified ~10min
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Key Bitcoin Operations
• Private key authorizes the transaction (“access“) 

• If keys are stolen, thief may use “your” coins

• If keys are lost, coins are lost

• In UTXO (unspent transaction output) systems, complete output is spent
paying 10 BTC

Wallet

13EaY4rpuLXRYXgCdJFsywoh6x2NhrkRKH 0.2234 1VosGaZ8iwowvkuc54rjMucf36cMpL7P6 20.44

1NdWxTX4911GKvJ6fbWhfdjHMfVkEX2LBF 3.24

16mx1UyNbBwzouf4fXRn6iiJFHqS4DdmDq 4.4

1EZxCiRSwt9rewAjnYNtadJQBPr5KG6Htz 5.6

Wallet

196gDJzJ8aZh4F2NuVJwpiJ6NktJndG2ju 0

Transaction

From: 16mx1UyNbBwzouf4fXRn6iiJFHqS4DdmDq 4.4

From: 1EZxCiRSwt9rewAjnYNtadJQBPr5KG6Htz 5.6

To: 196gDJzJ8aZh4F2NuVJwpiJ6NktJndG2ju 10

Sign with Private Key of User A

User A User B

10
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Transactions
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https://en.bitcoin.it/wiki/Transaction
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Blockchain
• Transactions are collected in blocks

• New block created approximately every 10 min

• Blocks contain 
solved crypto puzzles
•  In the form of partial hash collisions (SHA256)

● A block has a pointer to previous block → 
Blockchain

• Creation of blocks is called mining (reward)
• Mining / creating blocks → Miner get currently 

3.125 BTC per creation
- adjustable difficulty 6 blocks / h
- Sometime in 2028 reward will be 1.5625

https://dsl.i.ost.ch/lect/bl/hash.html
https://dsl.i.ost.ch/lect/bl/block.html
https://dsl.i.ost.ch/lect/bl/
https://en.bitcoin.it/wiki/Difficulty
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• Disadvantages 
• Power consumption

- ~ as much as Poland

• Not scalable
- Bitcoin with ~7 tps vs. VISA 57,000 tps (23.12)

[tps: transactions per sec]

• Anonymity
- Can be used for illegal activities

Discussion (1)
• Advantages

• Low (fixed) tx fees
- ~1.2 satoshi per byte / 0.25USD (~200bytes tx)

• Scalable
- Hardware/storage gets faster

• Anonymity
- Preserving privacy

Off-lin
e

https://digiconomist.net/bitcoin-energy-consumption/
https://bitbo.io/tools/fee-calculator/
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Discussion (2)
• Advantages

• No major “crashes” 
- Mt.Gox / FTX was exchange site!

• Decentralized
- Open protocol
- Forks

• Many other blockchain use cases
- Smart contracts

• Disadvantages

• Volatile exchange rate

• Central elemements

- Core developers

- Mining farms [link]

https://en.wikipedia.org/wiki/Mt._Gox
https://youtu.be/f0HC1Udk6-E?t=189
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