OST

Eastern Switzerland
University of Applied Sciences

Blockchain (BICh)

Repetition DSy - part 1

Thomas Bocek
14.09.2025

Lecture 1 + 2

Introducion / Motivation

2 | Blockchain O OS T

https://www.inkandswitch.com/local-first.html

Distributed Systems Motivation
* Why Distributed Systems

-+ Scaling

« Location

- Fault-tolerance (bitflips, outages) Submarine Cable M
ubmarine Cable Map

|;|i OF 0§ OF L8
_ O 0 R R
- 5 R OF 8
- -

3 I Blockchain O OST

https://en.wikipedia.org/wiki/Moore%27s_law
https://blogs.oracle.com/linux/attack-of-the-cosmic-rays-v2
https://subtelforum.com/category/cable-faults-maintenance/
https://www.inkandswitch.com/local-first.html
https://www.submarinecablemap.com/

Lecture 3

Monorepos / Polyrepos, Containers and VMs

4 | Blockchain O OS T

5

Pro/Cons - Opinion

* Monorepo
- Tight coupling of projects

- E.g., generating openapi.yml from backend,
generate types for frontend - simply copy

« Everyone sees all code / commits
« Encourages code sharing within organization

- Scaling: large repos, specialized tooling

Blockchain

Polyrepo

Loose coupling of projects

— If you want to generate openapi.yml, you need
access from the backend repository to the
frontend (e.g., curl+token)

Fine grained access control

Encourages code sharing across organizations

Scaling: many projects, special coordination

OOST

Key Differences

https://github.com/joelparkerhenderson/monorepo-vs-polyrepo#key-differences

Introduction

* Virtual machines Container Both

6 | Blockchain O OST

Lecture 4

Docker, Debugging Containers

7 | Blockchain O OS T

Docker Examples

* Install docker [ubuntu, Mac, Windows]

docker run hello-world

Fetches the hello world example from docker hub
No version provided — latest

Docker Hub: container image repository
— Community / official
— Alpine

docker save hello-world -o test.tar
tar xf test.tar

tar xf
cdccdf50922d90e847e097347ded49119be@f17c18
b4a2d98da9919fa5884479d/layer. tar

./hello

8 | Blockchain

See your installed images
- docker images / docker images -a

* docker rmi hello-world / docker
rmi fce289e99eb9

* docker ps -a
 docker rm 913edc5c90c4

GUI: e.g., Docker Desktop

OOST

https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-windows/
https://hub.docker.com/_/hello-world
https://hub.docker.com/
https://hub.docker.com/_/alpine
https://www.docker.com/products/docker-desktop/

How to Debug? / Pitfalls

* What is going on in my container, why is it
not running?

 docker exec -it <id> sh
nc / wget
* Reach other container: ping cointainername

Docker-compose has own DNS and resolves
to containernames

 Service bound to localhost?

* This cannot run outside docker

* Check logfiles!

If you write your own application, handle
cornercases at least with logging

9 | Blockchain

Example with netcat (nc)
nc -l
docker stats

|s docker application docker aware?

Docker memory limits are not hard limits, e.g.,
GC is not under pressure

If over limit, application restarts (if configured)
Live-Code-Reloading: use volumes
Check layers

Peformance: mulit-stage, .dockerignore

OOST

Lecture 5

Load Balancing

10 | Blockchain O OS T

Load Balancing

 What is load balancing

Distribution of workloads across multiple computing resources

- Workloads (requests)
- Computing resources (machines)

- Distributes client requests or network load efficiently across
multiple servers [link]

- E.g., service get popular, high load on service
- horizontal scaling

* Why load balancing

Ensures high availability and reliability by sending requests
only to servers that are online

Provides the flexibility to add or subtract servers as demand
dictates

11 |} Blockchain

Service
RES! Instance 1

Service
Instance 1
Service
Instance 2

OOST

Jaouejeq peo

Users

https://www.nginx.com/resources/glossary/load-balancing

Lecture 6

Web Architectures

12 | Blockchain O OS T

13

Examples

* Static site generation: dsl.i.ost.ch

* Server side rendering (e.g., handlebarsjs)

« Componets: nginx

- Java daemon who reacts on file changes in a
director. If markdown file changes - create
HTML, copy it to nginx directory

+ Simple example: ssr.go (no template)

- Components: go-based server

SPA

- Components: node server, go server

Blockchain

* Hydration

Server -

3

Server Rendering

Overview: source

“Static SSR™

S5R with
(Re)hydration

C5R with
Prerendering

Best of both worlds, but adds complexity,
needs JavaScript in the backend

--- Browser

¥

<f>|

Full CSR

An application
where input is
navigation requests
and the output Is
HTML in response
to them.

Entirely server-side

Dynamic HTML

Controls all aspects.

T = FCP
Fully streaming

Slow TTFB
Inflexible

Infra size / cost

Built as a Single
Page App, but all
pages prerendered
to static HTML as a
build step, and the
15 Is remaoved.

Buillt as If client-side

Static HTML

Fast TTFB
T =FCP
Fully streaming

Inflexible
Leads to hydration

bulld/deploy size

Gmail HTML, Hacker News Dacusawrus, Netflix*

Built as a Single
Page App. The
server prerenders
pages, but the full
app is also booted
an the client,

Bullt as cllent-side

Dynamic HTML
and |S/DOM

Renders pages
Flexible
Slow TTFE

TT| 525 FCP
Usually buffered

Infra size & |5 size

Razzle, etc

A Single Page App,
wihere the initial
shelliskeleton is
prerendered to
static HTML at build
time.

Client-side

Partial static HTML,
then [S/DOM

Delivers static HTML

Flexible
Fast TTFB

TTI = FCP
Limited streaming

15 slze

Gatsby, Vuepress, eic

A Single Page App.
Al logic, rendering
and booting is done
on the client. HTML
is essentially just
script & style tags.

Client-side
Entirely j5/00M
Delivers static HTML

Flexible
Fast TTFB

TTl === FCP
Nix streaming

15 size

Mot apps

gt

)ST

https://dev.to/ajcwebdev/what-is-partial-hydration-and-why-is-everyone-talking-about-it-3k56#react

CORS

¢« CORS = Cross-Origin Resource Sharing - w.Header().Set("Access-Control-Allow-Origin",

ll*ll
For security reasons, browsers restrict cross-origin)
HTTP requests initiated from scripts (among others) . Reverse proxy

Mechanism to instruct browsers that runs a resource
from origin A to run resources from origin B

Bezi.end service 1

e Solution

Use reverse proxy with builtin webserver, e.g., nginx, or

user reverse proxy with external webserver.
Frontend

— The client only sees the same origin for the API and
the frontend assets

Access-Control-Allow-Origin: https://foo.example }
J P P Backend service 1

— For dev: Access-Control-Allow-Origin: *

Backend service 2

Frontend

14 | Blockchain O OS T

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://foo.example/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Introduction
	Slide 7
	Docker Examples
	Slide 9
	Slide 10
	Load balancing
	Slide 12
	Slide 13
	CORS

