
14.09.2025

Blockchain (BlCh)
Repetition DSy – part 1

Thomas Bocek

Blockchain2

Lecture 1 + 2

Introducion / Motivation

Blockchain3

Distributed Systems Motivation
● Why Distributed Systems

● Scaling

● Location

● Fault-tolerance (bitflips, outages)

ht
tp

s:
//w

w
w

.in
ka

nd
sw

itc
h.

co
m

/lo
ca

l-f
irs

t.h
tm

l

Submarine Cable Map

ho
riz

on
ta

l

ve
rt

ic
a

l

https://en.wikipedia.org/wiki/Moore%27s_law
https://blogs.oracle.com/linux/attack-of-the-cosmic-rays-v2
https://subtelforum.com/category/cable-faults-maintenance/
https://www.inkandswitch.com/local-first.html
https://www.submarinecablemap.com/

Blockchain4

Lecture 3

Monorepos / Polyrepos, Containers and VMs

Blockchain5

Pro/Cons - Opinion
● Monorepo

● Tight coupling of projects
— E.g., generating openapi.yml from backend,

generate types for frontend → simply copy

● Everyone sees all code / commits

● Encourages code sharing within organization

● Scaling: large repos, specialized tooling

● Polyrepo
● Loose coupling of projects

— If you want to generate openapi.yml, you need
access from the backend repository to the
frontend (e.g., curl+token)

● Fine grained access control

● Encourages code sharing across organizations

● Scaling: many projects, special coordination

K
ey

 D
iff

er
en

ce
s

https://github.com/joelparkerhenderson/monorepo-vs-polyrepo#key-differences

Blockchain6

Introduction

Physical machine

Hypervisor

G
u

es
t O

S
A

pp
 1

A
pp

 2

A
pp

 3

Physical machine

G
u

es
t O

S

G
u

es
t O

S

Host OS

Docker

A
pp

 1

A
pp

 2

A
pp

 3

Host OS

Physical machine

Hypervisor

Guest OS

A
pp

 1

A
pp

 3
G

u
es

t O
S

Host OS

Docker

A
pp

 2

• Virtual machines • Container • Both

Blockchain7

Lecture 4

Docker, Debugging Containers

Blockchain8

Docker Examples
● Install docker [ubuntu, Mac, Windows]

● docker run hello-world
● Fetches the hello world example from docker hub
● No version provided – latest
● Docker Hub: container image repository

— Community / official
— Alpine

● docker save hello-world –o test.tar
● tar xf test.tar
● tar xf

cdccdf50922d90e847e097347de49119be0f17c18
b4a2d98da9919fa5884479d/layer.tar

● ./hello

● See your installed images
● docker images / docker images –a
● docker rmi hello-world / docker
rmi fce289e99eb9

● docker ps -a
● docker rm 913edc5c90c4

● GUI: e.g., Docker Desktop

https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-windows/
https://hub.docker.com/_/hello-world
https://hub.docker.com/
https://hub.docker.com/_/alpine
https://www.docker.com/products/docker-desktop/

Blockchain9

How to Debug? / Pitfalls
● What is going on in my container, why is it

not running?
● docker exec -it <id> sh

● nc / wget

● Reach other container: ping cointainername
● Docker-compose has own DNS and resolves

to containernames

● Service bound to localhost?
● This cannot run outside docker

● Check logfiles!
● If you write your own application, handle

cornercases at least with logging

● Example with netcat (nc)
● nc -l

● docker stats

● Is docker application docker aware?
● Docker memory limits are not hard limits, e.g.,

GC is not under pressure

● If over limit, application restarts (if configured)

● Live-Code-Reloading: use volumes

● Check layers

● Peformance: mulit-stage, .dockerignore

Blockchain10

Lecture 5

Load Balancing

Blockchain11

Load Balancing
● What is load balancing

● Distribution of workloads across multiple computing resources

— Workloads (requests)

— Computing resources (machines)

● Distributes client requests or network load efficiently across
multiple servers [link]

— E.g., service get popular, high load on service

→ horizontal scaling

● Why load balancing

● Ensures high availability and reliability by sending requests
only to servers that are online

● Provides the flexibility to add or subtract servers as demand
dictates

Users

LB

S1

S2

S3

S4

Users

Service
Instance 1REST

Users

Load balancer

Service
Instance 1

Service
Instance 2

REST

https://www.nginx.com/resources/glossary/load-balancing

Blockchain12

Lecture 6

Web Architectures

Blockchain13

Examples
● Static site generation: dsl.i.ost.ch

● Componets: nginx

● Java daemon who reacts on file changes in a
director. If markdown file changes → create
HTML, copy it to nginx directory

● Server side rendering (e.g., handlebarsjs)
● Simple example: ssr.go (no template)

● Components: go-based server

● SPA

● Components: node server, go server

● Hydration
● Best of both worlds, but adds complexity,

needs JavaScript in the backend

● Overview: source

https://dev.to/ajcwebdev/what-is-partial-hydration-and-why-is-everyone-talking-about-it-3k56#react

Blockchain14

CORS
● CORS = Cross-Origin Resource Sharing

● For security reasons, browsers restrict cross-origin
HTTP requests initiated from scripts (among others)

● Mechanism to instruct browsers that runs a resource
from origin A to run resources from origin B

● Solution

● Use reverse proxy with builtin webserver, e.g., nginx, or
user reverse proxy with external webserver.

→ The client only sees the same origin for the API and
the frontend assets

● Access-Control-Allow-Origin: https://foo.example

→ For dev: Access-Control-Allow-Origin: *

● w.Header().Set("Access-Control-Allow-Origin",
"*")

● Reverse proxy

Users

LB

Backend service 1

Backend service 2

Frontend

Users

LB
 / R

P

Backend service 1

Backend service 2

Frontend

CORS

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://foo.example/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Introduction
	Slide 7
	Docker Examples
	Slide 9
	Slide 10
	Load balancing
	Slide 12
	Slide 13
	CORS

