OST Eastern Switzerland University of Applied Sciences

Blockchain (BICh)

Ethereum Layer 2 Solutions

Thomas Bocek 25.11.2024

Layer 1 vs Layer 2: Basic Concepts

- Layer 1 (Base Chain)
 - Main Ethereum blockchain
 - Handles consensus, security, data availability
 - All nodes process all transactions
 - Limited by block size and time
- Layer 2 (Scaling Solutions)
 - Additional networks/protocols built on top of Ethereum
 - Inherit security from Layer 1
 - Process transactions externally
 - Post results back to mainnet

- Core Concepts
 - Secondary protocols built on top of Ethereum
 - Process transactions off the main chain
 - Inherit Ethereum's security guarantees
 - Significantly reduce gas fees
 - Increase transaction throughput
- Key Benefits
 - 10-100x lower fees (contracts, random)
 - Increased transactions per second (TPS)
 - Maintained decentralization

Why Do We Need Layer 2?

- Ethereum's current limitations
 - ~15-30 transactions per second
 - Average gas fees: \$2-\$50+ (highly variable)
 - Block space competition
 - Growing demand for DeFi and NFTs
- The Blockchain Trilemma
 - Decentralization: Network participants and control
 - Security: Protection against attacks
 - Scalability: Transaction throughput and costs
 - Why we can't have all three on L1

Comparison of Blockchain Trilemma Solutions

https://www.halborn.com/blog/post/what-is-sharding

Main Types of Layer 2 Solutions

- Rollups
 - Bundle multiple transactions into one
 - Submit transaction data to Ethereum mainnet
 - Two main types:
 - Optimistic Rollups
 - Zero-Knowledge (ZK) Rollups
- State Channels
 - Private payment channels between parties
 - We covered this in lecture 8

- Difference to Sidechains?
 - Store their own data independently
 - Own security mechanism (separate from Ethereum), independent consensus mechanism (e.g., Proof of Stake)
 - If sidechain is compromised, assets on that chain can be lost
 - But
 - Protocol-level connection to the parent chain
 - Regularly commits/anchors state to the parent chain

Optimistic vs. Zero-Knowledge Rollups

- Optimistic Rollups
 - Post transactions without proofs
 - Assume transactions are valid by default
 - Use fraud proofs to challenge invalid transactions
 - 7-day withdrawal period for security
 - Pros: EVM compatible, simpler technology
 - Cons: Longer withdrawal times
 - Examples: Optimism, Arbitrum

- ZK Rollups
 - ZKP: "A Zero-Knowledge Proof (ZKP) is a cryptographic method that allows one party to prove they know or possess specific information without revealing the information itself."
 - Generate validity proofs for each batch
 - Use mathematical proofs to verify transactions
 - Immediate finality once proven
 - Pros: Faster withdrawals, more efficient
 - Cons: More complex technology, limited EVM compatibility, compute intensive
 - Examples: zkSync, StarkNet

Technical Details

- Key Components
 - Smart Contracts on L1
 - Handle deposits/withdrawals
 - Store transaction batches
 - Verify proofs
 - Off-chain Infrastructure
 - Sequencers for transaction ordering
 - Provers/Validators for verification
 - State Management
 - Maintain current state off-chain
 - Regular state roots posted to L1

- Flow
 - User initiate transaction on e.g., Arbitrum
 - Arbitrum sequencer (orders transactions), operated by Offchain Labs (centralized)
 - Batch transactions together, post batch to Ethereum
 - Transaction considered "confirmed" on Arbitrum
- Security levels:
 - L2 confirmation from sequencer: immediate
 - L1 Batch Confirmation: ~10-15 minutes
 - Full Security: 7 days

Sequencer / Arbitrum Node

- Sequencer malicious or down
 - Users can force-include transactions directly through L1
 - Alternative sequencers can take over
 - Worst case: delays, but funds remain safe
- Data availability
 - ALL transaction data is posted to Ethereum
 - Posted in compressed calldata ~ratio 1:10
 - Anyone can reconstruct the entire Arbitrum state, not just summaries full transaction data

- Arbitrum node
 - Anyone can run an Arbitrum node
 - validate all transactions
 - Challengers are rewarded for finding fraud
 - Can challenge incorrect state transitions within 7 days
 - Faster?
 - Run your own trusted Arbitrum node
 - Use ZKP to check proof
- ZK proof for Sui: 1-2v cores: 20-30sec
 - Threadripper 2990WX 32-Core Processor, 2sec

Bridges / Future of L2

- For L1 to L2: ETH on L1
 - \rightarrow ETH locked in Bridge contract
 - \rightarrow Message to L2 to mint WETH
 - \rightarrow Auto-unwrapped to ETH on L2
- For L2 to L1: ETH on L2
 - \rightarrow Initiate withdrawal
 - \rightarrow Wait 7 days
 - \rightarrow Claim on L1
 - \rightarrow ETH released from bridge contract
- You need on both chains ETH for fees!
 - Or use exchanges / fast bridges (fee vs risk)

- L2 Ecosystem Growth
 - Total Value Locked (TVL) trends
 - Major DApps deploying on L2s
 - User adoption metrics
 - Cost comparisons with L1
 - L2 vs. fast L1
- Future
 - Layer 3s and application-specific chains
 - Cross-L2 communication protocols
 - Protocol standardization, Proto-Danksharding
 - Role in Ethereum's scalability roadmap

