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BitTorrent
● Last week: pkdns, A DNS server providing self-

sovereign and censorship-resistant domain 
names. It resolves records hosted on the 
BitTorrent Mainline DHT
● ~15m users – difficult to get a number now

● BitTorrent Protocol, created by Bram Cohen in 
2001
● Bram Cohen sold BitTorrent Inc to TRON, a 

blockchain platform that uses a Delegated Proof 
of Stake (DPoS) governance system, for ~140m 
led by controversial figure Justin Sun

● Bram Cohen then founded Chia Network, a 
other blockchain company focused on proof-of-
space-and-time (PoST) (mine with your SSD, 
and with 1 single core)

● What is BitTorrent?
● A peer-to-peer (P2P) file-sharing protocol that 

enables efficient distribution of large files

● Breaks files into small pieces for simultaneous 
downloads from multiple peers

● Users both download and upload pieces 
simultaneously, contributing to network 
efficiency

● Decentralized architecture reduces server load 
and bandwidth costs

● Clients: BitComet, DC++, eMule, Filetopia, 
μTorrent, OnionShare, qBittorrent, 
Shareaza, Transmission, Tribler, Vuze, 
WinMX

https://github.com/pubky/pkdns
https://trondao.org/
https://techcrunch.com/2018/06/18/bittorrent-tron/
https://coinmarketcap.com/currencies/chia-network/
https://en.wikipedia.org/wiki/BitTorrent
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BitTorrent Key Concepts
● Core Components:

● Tracker: Coordinates peers and maintains lists 
of active users

● Torrent File: Contains metadata about files and 
tracker information

● Seeds: Users with complete file copies

● Peers/Leechers: Users still downloading 
pieces

● Many other interesting technical details
● μTP: Micro Transport Protocol, similar to 

LEDBAT, Low Extra Delay Background 
Transport

— Actively monitors RTT to detect congestion, backing off 
when other applications need bandwidth

— "network-friendly" compared to traditional aggressive TCP

● Bencoding, tit-for-tat, ...

● Many interesting details that we will take a look at

● Merkle proofs

— Also used in many blockchains

● Bloom filters

— Avoid processing repeated messages, also used e.g., for 
blockchain light clients

● DHT / Kademlia

— Also used in Tor (e.g,onion services) / blockchains (e.g, 

— Polkadot for cross-chain communication, shariding)

https://en.wikipedia.org/wiki/LEDBAT
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Merkle Trees

● A Merkle tree is a binary hash tree containing leaf nodes

● Constructed bottom-up, i.e., 

● Used to summarize all transactions in a block

● To prove that a specific transaction is included in a block, a node only needs to produce  
hashes, constituting a merkle path connecting the specific transaction to the root of the tree.
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Merkle Proofs

● A node can prove that transaction K is included in the block by producing a merkle path 

● 𝒍𝒐𝒈𝟐  𝟏𝟔 =   long𝟒 𝒉𝒂𝒔𝒉𝒆𝒔
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BitTorrent: Mechanisms
● Magnet links

● Magnet is URI scheme, does not point to a centralized tracker

— No centralized tracker: pointer to DHT

— General purpose, not only for BT

— magnet:?xl=1000&dn=song1.mp3&xt=urn:tree:tiger:2A3B… 

● tree:tiger → Hash Tree

— Tree of hashes (|| → concatenation)

— hash 0 = hash( hash 0-0 || hash 0-1 )

— hash 1 = hash( hash 1-0 || hash 1-1 )

— Top hash = hash( hash 0 || hash 1 )

http://en.wikipedia.org/wiki/Hash_tree

https://en.wikipedia.org/wiki/Magnet_URI_scheme
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BitTorrent: Mechanisms
● Verification

● Peer A has top hash (root hash)

● Peer downloads C4 from peer B

— create hash 8

● Need hash 10, 13, 3 (uncle hash)

— Can be from peer B

● With 8,10,13,3 can create root hash

→ verify this root hash

● Usage: Blockchain, P2P filesharing, git, 
Amazons Dynamo, ZFS

http://datatracker.ietf.org/doc/draft-ietf-ppsp-peer-protocol/ Section 5.2

http://datatracker.ietf.org/doc/draft-ietf-ppsp-peer-protocol/
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Bloom Filter
● An array of m bits, initially all bits set to 0

● A bloom filter uses k independent hash functions

● h1, h2, …, hk with range {1, …, m}

● Each input is hashed with every hash function

● Set the corresponding bits in the vector

● Operations

● Insertion

— The bit A[hi(x)] for 1 < i < k are set to 1

● Query

— Yes if all of the bits A[hi(x)] are 1, no otherwise

● Deletion

— Removing an element from this simple Bloom filter is 
impossible

Strings

Hash Functions

Bloom Filter
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Query of an Element, m=18, k=3
● Insert x, y, z

● Query w

● Example for False-positives
● Insertions

— Hash („color printer“) => (1,4,6)

— Hash („digital camera“) => (3,4,5)

— Bloom filter (1,3,4,5,6)

● Query
— Hash („heat sensor“) => (3,4,6)

— Matches since bits 3,4,6 are all set to 1

● Online

● False-negative
● Query 

— Hash (“color printer”) => (1,4,6) , matches (1,3,4,5,6) 
→ no false-negativehttp://en.wikipedia.org/wiki/Bloom_filter 

http://billmill.org/bloomfilter-tutorial/
http://en.wikipedia.org/wiki/Bloom_filter
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Properties
● Space Efficiency

● Any Bloom filter can represent the entire 
universe of elements

— In this case, all bits are 1

● No Space Constraints

● Add never fails

● But false positive rate increases steadily as 
elements are added

● Simple Operations

● Union of Bloom filters: bitwise OR

● Intersection of Bloom filters: bitwise AND

● No false negative, but false positive

● False-positive probability:

● n number of strings; k hash functions; m-bit 
vector

=> Given m/n, there is an optimal
number of hash functions (opt. k = m/n ln 2, or k=-log2(f)

(when 50% of the bits are set)
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Bloom Filter Variants
● Compressed Bloom Filters

● When the filter is intended to be passed as a message

● False-positive rate is optimized for the compressed 
bloom filter (uncompressed bit vector m will be larger but 
sparser)

● However, compression/decompression, more memory

● Generalized Bloom Filter

● Two type of hash functions gi (reset bits to 0) 
and hj (set bits to 1)

● Start with an arbitrary vector (bits can be either 0 or 1)

● In case of collisions between gi and hj, bit is reset to 0

● Store more info with low false positive

● Produces either false positives or false negatives

● Counting Bloom Filters
● Entry in the filter not be a single bit but a counter
● Delete operation possible (decrementing counter)

● Scalable Bloom Filter
● Adapt dynamically to number of elements, consist 

of regular Bloom filters
● “A SBF is made up of a series of one or more 

(plain) Bloom Filters; when filters get full due to 
the limit on the fill ratio, a new one is added; 
querying is made by testing for the presence in 
each filter”

● Others, e.g., Cuckoo filter, VQF
● Usage: e.g., fast search at LinkedIn

http://www.eecs.harvard.edu/~michaelm/NEWWORK/postscripts/cbf2.pdf
http://www.gta.ufrj.br/ftp/gta/TechReports/LVD05d.pdf
http://gsd.di.uminho.pt/members/cbm/ps/dbloom.pdf
https://www.cs.cmu.edu/~dga/papers/cuckoo-conext2014.pdf
https://users.cs.utah.edu/~pandey/courses/cs6968/spring23/papers/vqf.pdf
https://engineering.linkedin.com/open-source/cleo-open-source-technology-behind-linkedins-typeahead-search
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DHT / Kademlia
● Essential challenge in (most) distributed / P2P systems?

● Location of a data item among systems distributed 
— Where shall the item be stored?

— How can the item be found?

● Scalability: keep the complexity for communication and storage scalable
● Robustness and resilience in case of faults and frequent changes
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Comparison of Strategies for Data Retrieval
● Strategies to store and retrieve data items in distributed systems 

● Central server (e.g., service registry, reverse proxy - although main use case is load balancing)

● Flooding search (e.g., layer 2 broadcasting, wireless mesh networks, Bitcoin)

● Structured indexing (Tor, Bittorrent, IPFS, Apache Cassandra)

https://github.com/Netflix/eureka
https://en.wikipedia.org/wiki/Reverse_proxy
https://en.wikipedia.org/wiki/Broadcasting_(networking)
https://en.wikipedia.org/wiki/Wireless_ad_hoc_network
https://en.bitcoin.it/wiki/Transaction_broadcasting
https://www.torproject.org/
https://www.bittorrent.org/
https://ipfs.io/
https://cassandra.apache.org/_/index.html
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Structured Indexing (1)
● Goal is scalable complexity for

● Communication effort: O(log(N)) hops

● Node state: O(log(N)) routing entries Routing in O(log(N)) 
steps to the node 
storing the data

Nodes store O(log(N)) 
routing information to 

other nodes
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Structured Indexing (2)
● Approach of structured indexing 

schemes

● Data and nodes are mapped into same 
address space

● Nodes maintain routing information to 
other nodes

— Definitive statement of existence of content

● Problems

● Maintenance of routing information 
required

● Overlay/Underlay
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Fundamentals of Distributed Hash Tables
● Challenges for designing DHTs

● Desired Characteristics 

— Reliability / Scalability

● Equal distribution of content among nodes

— Crucial for efficient lookup of content

● Permanent adaptation to faults, joins, exits of 
nodes

— Assignment of responsibilities to new nodes

— Re-assignment and re-distribution of 

responsibilities in case of node failure or 

departure

● Distributed Hash Table
● Consistent hashing → nodes responsible for 

hash value intervals

● More peers = smaller responsible intervals

● Hash Table [link]
● Modulo hashing

— Bucket = hash(x) mod n

● If n changes, remapping / bucket changes

● N changes if capacity is reached 

● Remapping is expensive in DHT!

— DHTs reassign responsibility

https://www.youtube.com/watch?v=KyUTuwz_b7Q
https://de.wikipedia.org/wiki/Hashtabelle#/media/Datei:Hash_table_5_0_1_1_1_1_1_LL.svg
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Routing to a Data Item
● Locating the data / Routing to a K/V-pair

● Start lookup at arbitrary node of DHT

● Routing to requested data item (key)

Initial node
(arbitrary)

Node 3485 manages 
keys 2907-3485, 

(3107, (ip, port))

Value = pointer to location of data

Key = H(“my data”)
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Join/Leave
● Joining of a new node

1) Calculation of node ID (normally random / or 
based on PK)

2) New node contacts DHT via arbitrary node 
(bootstrap node)

3) Lookup of its node ID (routing)

4) Copying of K/V-pairs of hash range (in case of 
replication)

5) Notify neighbors

● Failure of a node
● Use of redundant K/V pairs (if a node fails)
● Use of redundant / alternative routing paths
● Key-value usually still retrievable if at least one 

copy remains

● Departure of a node 

● Copying of K/V pairs to corresponding nodes

— Can be before or after unbinding

● Friendly unbinding from routing environment

— If unbinding is unfriendly, need for keep-alive 

messages

I’m 3400, where 
are my neigbors?
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Kademlia
● Several approaches to build DHT

● Distance metric as key difference
— Chord, Pastry: numerical closeness

— CAN: multidimensional numerical closeness

— Kademlia: XOR metric

● Kademlia designed in 2002 by Maymounkov 
and Mazières
● Many implementations, application specific

— BitTorrent (tracker), IPFS, Tor Onion Services

● Parallel queries
● For one query, α (alpha) concurrent lookups are 

sent
● More traffic load, but lower response times

● Preference towards old contacts
● Study has shown that the longer a node has been 

up, the more likely it is to remain up another hour
● Resistance against DoS attacks by flooding the 

network with new nodes

● Network maintenance
● In Chord: active fixing of fingers
● In Kademlia: active maintenance

● DHT-based overlay network using the XOR 
distance metric
● Symmetrical routing paths

(A → B == B → A)
— due to XOR(A,B) == XOR (B,A)

https://en.wikipedia.org/wiki/Kademlia
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Construction of Routing Table
● Each Kademlia node and data item has unique 

identifier
● 160 bit (SHA-1)
● Nodes: Node ID (160bit)

— Can be calculated from IP address or public key, and 
data item using secure hash function, or just random

● Data items: Keys (160bit), hash of data item

● Keys are located on the node whose node ID is 
closest to the key
● Knows neighbors well, further nodes not that 

much
● Kademlia: 160 buckets with size 20 (8)
● If distance can be represented in m bits, bucket m 

will be used

XOR Distance Calculation:

ID Node A: 110101
ID Node B: 010001

dXOR(A,B) = d(110101,010001)

1 1 0 1 0 1
    XOR
0 1 0 0 0 1 
       ↓        
1 0 0 1 0 0   

dXOR(A,B) = 1 0 0 1 0 02 = 3610

http://pdos.csail.mit.edu/~petar/papers/maymounkov-kademlia-lncs.pdf
http://pdos.csail.mit.edu/~petar/papers/maymounkov-kademlia-lncs.pdf
https://shattered.io/
http://people.kth.se/~rauljc/p2p11/jimenez2011subsecond.pdf
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Kademlia Example
● 23, max size 8, #6 searches for 3

● Neighbors of 6, if k=1

● Search for 3, ask 0, neighbors of 0
● Ask 2, neighbors of 2

● Ask 2, 2 replies 0. 6 figures that there is no 
closer node, 2 is the closest one (2 xor 3 =1)

1 2 3

7 4 (or 5) 0 (or 1, 2)

Routing Table of #6
6 xor 3 = 101b

1 2 3

1 2 4 (or 5, 6, 7)

Routing Table of #0
0 xor 3 = 11b

1 2 3

- 0 (or 1) 4 (or 5, 6, 7)

Routing Table of #2
2 xor 3 = 1b

Routing with XOR, 
with 3-bits

Key 011 Node ID 
110
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TomP2P
● TomP2P is a P2P framework/library

● Unmaintained ☹

● Implements DHT (structured), broadcasts 
([un]structured), direct messages (can 
implement super-peers)

● NAT handling: UPNP, NATPMP, relays, hole 
punching (work in progress)

● Direct / indirect (tracker / mesh) storage

● Direct / indirect replication (churn prediction 
and ~rsync)

● Yes, this is the first Android device, HTC Dream, 
Sept. 2009
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Fully Decentralized Systems
● Always consider Sybil attacks

● TomP2P, BitTorrent, etc.

— Data can always disappear

● Know when data changed

● Sybil attack
● Create large number of identities

● Larger than honest nodes

— Control “close” nodes in a DHT

— Isolate nodes

● Prevention [source]
● Creation of identities costs money

● Always assume data from other nodes may be 
missing

— Bitcoin – chain of block, if block is missing, you 
notice

● Chain of trust / reputation

You Sybil nodesHonest nodes

https://en.wikipedia.org/wiki/Sybil_attack
https://coincentral.com/sybil-attack-blockchain/
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Attacking the DHT
● Example
● Create a key for a data item close to the target:

Number160.createHash(data).xor(new Number160(0)) – distance 0, perfect match
Number160.createHash(data).xor(new Number160(1)) – distance 1
Number160.createHash(data).xor(new Number160(2)) – distance 2
…

● Or create key of node close to the target
new PeerBuilder( new Number160( RND ) ).ports( port ).start(), where RND is
Number160.createHash(data).xor(new Number160(0))
Number160.createHash(data).xor(new Number160(1))
…

● Peer can then answer there is no data
● For previously known values / peers (known public key)

● Cannot change data, but make it disappear

https://github.com/tbocek/VSS-FS18/tree/master/VSS-tomp2p
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Redundancy in DHTs
● Replication

● Enough replicas

● Direct replication

— Originator peer is responsible

— Periodically refresh replicas

— Example: tracker that announces its data

● Problem

● Originator offline → replicas disappear. 
Content has TTL
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Redundancy in DHTs
● Indirect Replication

● The closest peer is responsible, originator may 
go offline vs any close peers are responsible

— Periodically checks if enough replicas exist

— Detects if responsibility changes

● Problem

● Requires cooperation between responsible 
peer and originator

● Multiple peers may think they are responsible 
for different versions → eventually solved

closest vs any
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Replication and Consistency
● DHTs have weak consistency

● Peer A put X.1
● Peer B gets X.1 
● Peer B modifies it puts B.2

● Same time (time in distributed systems): 
● Peer C gets X.1 
● Peer C modifies it puts C.2

● Replication makes it worse
● Consistency: generic issue in distributed systems, 

requires typically coordinator

● Multi-Paxos, Raft, ZooKeeper → Leader 
Election

● vDHT: CoW, versions, 2PC, replication, 
software transactional memory (STM) → for 
consistent updates. Works for light churn
● No locking, no timestamps (replication time may 

have an influence)
● Every update – new version

— get latest version, check if all replica peers have 
latest version, if not wait and try again

— put prepared with data and short TTL, if status is OK 
on all replica peers, go ahead, otherwise, remove the 
data and go to step 1.

— put confirmed, don’t send the data, just remove the 
prepared flag

● Leader is the originator
● In case of heavy churn, API user needs to 

resolve

https://queue.acm.org/detail.cfm?id=2745385
https://github.com/tomp2p/TomP2P/blob/master/examples/src/main/java/net/tomp2p/examples/ExampleVDHT.java
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