
11.11.2024

Blockchain (BlCh)
Algorithms/Mechanisms for Fully Distributed Systems

Thomas Bocek

Blockchain2

BitTorrent
● Last week: pkdns, A DNS server providing self-

sovereign and censorship-resistant domain
names. It resolves records hosted on the
BitTorrent Mainline DHT
● ~15m users – difficult to get a number now

● BitTorrent Protocol, created by Bram Cohen in
2001
● Bram Cohen sold BitTorrent Inc to TRON, a

blockchain platform that uses a Delegated Proof
of Stake (DPoS) governance system, for ~140m
led by controversial figure Justin Sun

● Bram Cohen then founded Chia Network, a
other blockchain company focused on proof-of-
space-and-time (PoST) (mine with your SSD,
and with 1 single core)

● What is BitTorrent?
● A peer-to-peer (P2P) file-sharing protocol that

enables efficient distribution of large files

● Breaks files into small pieces for simultaneous
downloads from multiple peers

● Users both download and upload pieces
simultaneously, contributing to network
efficiency

● Decentralized architecture reduces server load
and bandwidth costs

● Clients: BitComet, DC++, eMule, Filetopia,
μTorrent, OnionShare, qBittorrent,
Shareaza, Transmission, Tribler, Vuze,
WinMX

https://github.com/pubky/pkdns
https://trondao.org/
https://techcrunch.com/2018/06/18/bittorrent-tron/
https://coinmarketcap.com/currencies/chia-network/
https://en.wikipedia.org/wiki/BitTorrent

Blockchain3

BitTorrent Key Concepts
● Core Components:

● Tracker: Coordinates peers and maintains lists
of active users

● Torrent File: Contains metadata about files and
tracker information

● Seeds: Users with complete file copies

● Peers/Leechers: Users still downloading
pieces

● Many other interesting technical details
● μTP: Micro Transport Protocol, similar to

LEDBAT, Low Extra Delay Background
Transport

— Actively monitors RTT to detect congestion, backing off
when other applications need bandwidth

— "network-friendly" compared to traditional aggressive TCP

● Bencoding, tit-for-tat, ...

● Many interesting details that we will take a look at

● Merkle proofs

— Also used in many blockchains

● Bloom filters

— Avoid processing repeated messages, also used e.g., for
blockchain light clients

● DHT / Kademlia

— Also used in Tor (e.g,onion services) / blockchains (e.g,

— Polkadot for cross-chain communication, shariding)

https://en.wikipedia.org/wiki/LEDBAT

Blockchain4

Merkle Trees

● A Merkle tree is a binary hash tree containing leaf nodes

● Constructed bottom-up, i.e.,

● Used to summarize all transactions in a block

● To prove that a specific transaction is included in a block, a node only needs to produce
hashes, constituting a merkle path connecting the specific transaction to the root of the tree.

Blockchain5

Merkle Proofs

● A node can prove that transaction K is included in the block by producing a merkle path

● 𝒍𝒐𝒈𝟐 𝟏𝟔 = long𝟒 𝒉𝒂𝒔𝒉𝒆𝒔

Blockchain6

BitTorrent: Mechanisms
● Magnet links

● Magnet is URI scheme, does not point to a centralized tracker

— No centralized tracker: pointer to DHT

— General purpose, not only for BT

— magnet:?xl=1000&dn=song1.mp3&xt=urn:tree:tiger:2A3B…

● tree:tiger → Hash Tree

— Tree of hashes (|| → concatenation)

— hash 0 = hash(hash 0-0 || hash 0-1)

— hash 1 = hash(hash 1-0 || hash 1-1)

— Top hash = hash(hash 0 || hash 1)

http://en.wikipedia.org/wiki/Hash_tree

https://en.wikipedia.org/wiki/Magnet_URI_scheme

Blockchain7

BitTorrent: Mechanisms
● Verification

● Peer A has top hash (root hash)

● Peer downloads C4 from peer B

— create hash 8

● Need hash 10, 13, 3 (uncle hash)

— Can be from peer B

● With 8,10,13,3 can create root hash

→ verify this root hash

● Usage: Blockchain, P2P filesharing, git,
Amazons Dynamo, ZFS

http://datatracker.ietf.org/doc/draft-ietf-ppsp-peer-protocol/ Section 5.2

http://datatracker.ietf.org/doc/draft-ietf-ppsp-peer-protocol/

Blockchain8

Bloom Filter
● An array of m bits, initially all bits set to 0

● A bloom filter uses k independent hash functions

● h1, h2, …, hk with range {1, …, m}

● Each input is hashed with every hash function

● Set the corresponding bits in the vector

● Operations

● Insertion

— The bit A[hi(x)] for 1 < i < k are set to 1

● Query

— Yes if all of the bits A[hi(x)] are 1, no otherwise

● Deletion

— Removing an element from this simple Bloom filter is
impossible

Strings

Hash Functions

Bloom Filter

Blockchain9

Query of an Element, m=18, k=3
● Insert x, y, z

● Query w

● Example for False-positives
● Insertions

— Hash („color printer“) => (1,4,6)

— Hash („digital camera“) => (3,4,5)

— Bloom filter (1,3,4,5,6)

● Query
— Hash („heat sensor“) => (3,4,6)

— Matches since bits 3,4,6 are all set to 1

● Online

● False-negative
● Query

— Hash (“color printer”) => (1,4,6) , matches (1,3,4,5,6)
→ no false-negativehttp://en.wikipedia.org/wiki/Bloom_filter

http://billmill.org/bloomfilter-tutorial/
http://en.wikipedia.org/wiki/Bloom_filter

Blockchain10

Properties
● Space Efficiency

● Any Bloom filter can represent the entire
universe of elements

— In this case, all bits are 1

● No Space Constraints

● Add never fails

● But false positive rate increases steadily as
elements are added

● Simple Operations

● Union of Bloom filters: bitwise OR

● Intersection of Bloom filters: bitwise AND

● No false negative, but false positive

● False-positive probability:

● n number of strings; k hash functions; m-bit
vector

=> Given m/n, there is an optimal
number of hash functions (opt. k = m/n ln 2, or k=-log2(f)

(when 50% of the bits are set)

Blockchain11

Bloom Filter Variants
● Compressed Bloom Filters

● When the filter is intended to be passed as a message

● False-positive rate is optimized for the compressed
bloom filter (uncompressed bit vector m will be larger but
sparser)

● However, compression/decompression, more memory

● Generalized Bloom Filter

● Two type of hash functions gi (reset bits to 0)
and hj (set bits to 1)

● Start with an arbitrary vector (bits can be either 0 or 1)

● In case of collisions between gi and hj, bit is reset to 0

● Store more info with low false positive

● Produces either false positives or false negatives

● Counting Bloom Filters
● Entry in the filter not be a single bit but a counter
● Delete operation possible (decrementing counter)

● Scalable Bloom Filter
● Adapt dynamically to number of elements, consist

of regular Bloom filters
● “A SBF is made up of a series of one or more

(plain) Bloom Filters; when filters get full due to
the limit on the fill ratio, a new one is added;
querying is made by testing for the presence in
each filter”

● Others, e.g., Cuckoo filter, VQF
● Usage: e.g., fast search at LinkedIn

http://www.eecs.harvard.edu/~michaelm/NEWWORK/postscripts/cbf2.pdf
http://www.gta.ufrj.br/ftp/gta/TechReports/LVD05d.pdf
http://gsd.di.uminho.pt/members/cbm/ps/dbloom.pdf
https://www.cs.cmu.edu/~dga/papers/cuckoo-conext2014.pdf
https://users.cs.utah.edu/~pandey/courses/cs6968/spring23/papers/vqf.pdf
https://engineering.linkedin.com/open-source/cleo-open-source-technology-behind-linkedins-typeahead-search

Blockchain12

DHT / Kademlia
● Essential challenge in (most) distributed / P2P systems?

● Location of a data item among systems distributed
— Where shall the item be stored?

— How can the item be found?

● Scalability: keep the complexity for communication and storage scalable
● Robustness and resilience in case of faults and frequent changes

Blockchain13

Comparison of Strategies for Data Retrieval
● Strategies to store and retrieve data items in distributed systems

● Central server (e.g., service registry, reverse proxy - although main use case is load balancing)

● Flooding search (e.g., layer 2 broadcasting, wireless mesh networks, Bitcoin)

● Structured indexing (Tor, Bittorrent, IPFS, Apache Cassandra)

https://github.com/Netflix/eureka
https://en.wikipedia.org/wiki/Reverse_proxy
https://en.wikipedia.org/wiki/Broadcasting_(networking)
https://en.wikipedia.org/wiki/Wireless_ad_hoc_network
https://en.bitcoin.it/wiki/Transaction_broadcasting
https://www.torproject.org/
https://www.bittorrent.org/
https://ipfs.io/
https://cassandra.apache.org/_/index.html

Blockchain14

Structured Indexing (1)
● Goal is scalable complexity for

● Communication effort: O(log(N)) hops

● Node state: O(log(N)) routing entries Routing in O(log(N))
steps to the node
storing the data

Nodes store O(log(N))
routing information to

other nodes

Blockchain15

Structured Indexing (2)
● Approach of structured indexing

schemes

● Data and nodes are mapped into same
address space

● Nodes maintain routing information to
other nodes

— Definitive statement of existence of content

● Problems

● Maintenance of routing information
required

● Overlay/Underlay

Blockchain16

Fundamentals of Distributed Hash Tables
● Challenges for designing DHTs

● Desired Characteristics

— Reliability / Scalability

● Equal distribution of content among nodes

— Crucial for efficient lookup of content

● Permanent adaptation to faults, joins, exits of
nodes

— Assignment of responsibilities to new nodes

— Re-assignment and re-distribution of

responsibilities in case of node failure or

departure

● Distributed Hash Table
● Consistent hashing → nodes responsible for

hash value intervals

● More peers = smaller responsible intervals

● Hash Table [link]
● Modulo hashing

— Bucket = hash(x) mod n

● If n changes, remapping / bucket changes

● N changes if capacity is reached

● Remapping is expensive in DHT!

— DHTs reassign responsibility

https://www.youtube.com/watch?v=KyUTuwz_b7Q
https://de.wikipedia.org/wiki/Hashtabelle#/media/Datei:Hash_table_5_0_1_1_1_1_1_LL.svg

Blockchain17

Routing to a Data Item
● Locating the data / Routing to a K/V-pair

● Start lookup at arbitrary node of DHT

● Routing to requested data item (key)

Initial node
(arbitrary)

Node 3485 manages
keys 2907-3485,

(3107, (ip, port))

Value = pointer to location of data

Key = H(“my data”)

Blockchain18

Join/Leave
● Joining of a new node

1) Calculation of node ID (normally random / or
based on PK)

2) New node contacts DHT via arbitrary node
(bootstrap node)

3) Lookup of its node ID (routing)

4) Copying of K/V-pairs of hash range (in case of
replication)

5) Notify neighbors

● Failure of a node
● Use of redundant K/V pairs (if a node fails)
● Use of redundant / alternative routing paths
● Key-value usually still retrievable if at least one

copy remains

● Departure of a node

● Copying of K/V pairs to corresponding nodes

— Can be before or after unbinding

● Friendly unbinding from routing environment

— If unbinding is unfriendly, need for keep-alive

messages

I’m 3400, where
are my neigbors?

Blockchain19

Kademlia
● Several approaches to build DHT

● Distance metric as key difference
— Chord, Pastry: numerical closeness

— CAN: multidimensional numerical closeness

— Kademlia: XOR metric

● Kademlia designed in 2002 by Maymounkov
and Mazières
● Many implementations, application specific

— BitTorrent (tracker), IPFS, Tor Onion Services

● Parallel queries
● For one query, α (alpha) concurrent lookups are

sent
● More traffic load, but lower response times

● Preference towards old contacts
● Study has shown that the longer a node has been

up, the more likely it is to remain up another hour
● Resistance against DoS attacks by flooding the

network with new nodes

● Network maintenance
● In Chord: active fixing of fingers
● In Kademlia: active maintenance

● DHT-based overlay network using the XOR
distance metric
● Symmetrical routing paths

(A → B == B → A)
— due to XOR(A,B) == XOR (B,A)

https://en.wikipedia.org/wiki/Kademlia

Blockchain20

Construction of Routing Table
● Each Kademlia node and data item has unique

identifier
● 160 bit (SHA-1)
● Nodes: Node ID (160bit)

— Can be calculated from IP address or public key, and
data item using secure hash function, or just random

● Data items: Keys (160bit), hash of data item

● Keys are located on the node whose node ID is
closest to the key
● Knows neighbors well, further nodes not that

much
● Kademlia: 160 buckets with size 20 (8)
● If distance can be represented in m bits, bucket m

will be used

XOR Distance Calculation:

ID Node A: 110101
ID Node B: 010001

dXOR(A,B) = d(110101,010001)

1 1 0 1 0 1
 XOR
0 1 0 0 0 1
 ↓
1 0 0 1 0 0

dXOR(A,B) = 1 0 0 1 0 02 = 3610

http://pdos.csail.mit.edu/~petar/papers/maymounkov-kademlia-lncs.pdf
http://pdos.csail.mit.edu/~petar/papers/maymounkov-kademlia-lncs.pdf
https://shattered.io/
http://people.kth.se/~rauljc/p2p11/jimenez2011subsecond.pdf

Blockchain21

Kademlia Example
● 23, max size 8, #6 searches for 3

● Neighbors of 6, if k=1

● Search for 3, ask 0, neighbors of 0
● Ask 2, neighbors of 2

● Ask 2, 2 replies 0. 6 figures that there is no
closer node, 2 is the closest one (2 xor 3 =1)

1 2 3

7 4 (or 5) 0 (or 1, 2)

Routing Table of #6
6 xor 3 = 101b

1 2 3

1 2 4 (or 5, 6, 7)

Routing Table of #0
0 xor 3 = 11b

1 2 3

- 0 (or 1) 4 (or 5, 6, 7)

Routing Table of #2
2 xor 3 = 1b

Routing with XOR,
with 3-bits

Key 011 Node ID
110

Blockchain22

TomP2P
● TomP2P is a P2P framework/library

● Unmaintained ☹

● Implements DHT (structured), broadcasts
([un]structured), direct messages (can
implement super-peers)

● NAT handling: UPNP, NATPMP, relays, hole
punching (work in progress)

● Direct / indirect (tracker / mesh) storage

● Direct / indirect replication (churn prediction
and ~rsync)

● Yes, this is the first Android device, HTC Dream,
Sept. 2009

Blockchain23

Fully Decentralized Systems
● Always consider Sybil attacks

● TomP2P, BitTorrent, etc.

— Data can always disappear

● Know when data changed

● Sybil attack
● Create large number of identities

● Larger than honest nodes

— Control “close” nodes in a DHT

— Isolate nodes

● Prevention [source]
● Creation of identities costs money

● Always assume data from other nodes may be
missing

— Bitcoin – chain of block, if block is missing, you
notice

● Chain of trust / reputation

You Sybil nodesHonest nodes

https://en.wikipedia.org/wiki/Sybil_attack
https://coincentral.com/sybil-attack-blockchain/

Blockchain24

Attacking the DHT
● Example
● Create a key for a data item close to the target:

Number160.createHash(data).xor(new Number160(0)) – distance 0, perfect match
Number160.createHash(data).xor(new Number160(1)) – distance 1
Number160.createHash(data).xor(new Number160(2)) – distance 2
…

● Or create key of node close to the target
new PeerBuilder(new Number160(RND)).ports(port).start(), where RND is
Number160.createHash(data).xor(new Number160(0))
Number160.createHash(data).xor(new Number160(1))
…

● Peer can then answer there is no data
● For previously known values / peers (known public key)

● Cannot change data, but make it disappear

https://github.com/tbocek/VSS-FS18/tree/master/VSS-tomp2p

Blockchain25

Redundancy in DHTs
● Replication

● Enough replicas

● Direct replication

— Originator peer is responsible

— Periodically refresh replicas

— Example: tracker that announces its data

● Problem

● Originator offline → replicas disappear.
Content has TTL

Blockchain26

Redundancy in DHTs
● Indirect Replication

● The closest peer is responsible, originator may
go offline vs any close peers are responsible

— Periodically checks if enough replicas exist

— Detects if responsibility changes

● Problem

● Requires cooperation between responsible
peer and originator

● Multiple peers may think they are responsible
for different versions → eventually solved

closest vs any

Blockchain27

Replication and Consistency
● DHTs have weak consistency

● Peer A put X.1
● Peer B gets X.1
● Peer B modifies it puts B.2

● Same time (time in distributed systems):
● Peer C gets X.1
● Peer C modifies it puts C.2

● Replication makes it worse
● Consistency: generic issue in distributed systems,

requires typically coordinator

● Multi-Paxos, Raft, ZooKeeper → Leader
Election

● vDHT: CoW, versions, 2PC, replication,
software transactional memory (STM) → for
consistent updates. Works for light churn
● No locking, no timestamps (replication time may

have an influence)
● Every update – new version

— get latest version, check if all replica peers have
latest version, if not wait and try again

— put prepared with data and short TTL, if status is OK
on all replica peers, go ahead, otherwise, remove the
data and go to step 1.

— put confirmed, don’t send the data, just remove the
prepared flag

● Leader is the originator
● In case of heavy churn, API user needs to

resolve

https://queue.acm.org/detail.cfm?id=2745385
https://github.com/tomp2p/TomP2P/blob/master/examples/src/main/java/net/tomp2p/examples/ExampleVDHT.java

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

