OST Eastern Switzerland University of Applied Sciences

Blockchain (BICh)

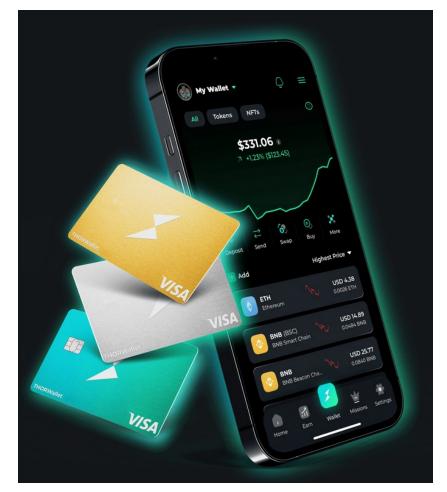
Seeds and Wallets

Thomas Bocek 28.10.2024

Introduction to Cryptocurrency Wallets

- What Are Cryptocurrency Wallets?
 - Digital tools to store, send, and receive digital currencies
 - Analog to ~bank accounts
- Key Functions of a Wallet
 - Storage of Private and Public Keys
 - Sign transactions
 - Interaction with blockchain
 - Balance checking and transaction history
- Types of Wallets
 - Hardware Wallets, Software Wallets, Paper Wallets

- Hardware Wallets
 - Trezor, Ledger, BitBox specialized hardware
- Software Wallets
 - Metamask, Trust Wallet
- Paper Wallet
 - Physical document with mnemonic words


	SW wallet	HW wallet	Paper wallet
Hot wallet	X	X	
Cold wallet		X	X

Introduction to Cryptocurrency Wallets

- Importance of wallet security
 - Keeping assets safe from unauthorized access and cyber theft
 - Importance of backup and recovery methods
- Convenience and accessibility
 - Ease of use, mobile and desktop access
 - Importance for widespread adoption of cryptocurrencies
- Cryptocurrency wallets vs traditional banking
 - User-controlled security vs. bank-managed security

Introduction to HD Wallets

- Hierarchical Deterministic (HD) Wallets
 - Most cryptocurrency wallet are HD wallets
 - Based on the BIP32/BIP44 protocol
 - Allows creation of derived keys from a single master seed
- Key Features
 - Generation of multiple cryptocurrency addresses from a single seed
 - Simplifies management and backup
 - Each transaction could use a unique address for enhanced privacy

- Understanding BIP32/BIP44
 - BIP32 (Bitcoin Improvement Proposal 32) introduces the concept of hierarchical deterministic wallets
 - BIP44 builds on BIP32, adding a structure for multiple coin types and accounts
- Mechanism of HD Wallets
 - Based on a single seed (typically based on a BIP39 mnemonic phrase)
 - Seed leads to the generation of a master private key

Introduction to HD Wallets

- Benefits of HD Wallets
 - Efficient Backup: Single seed backup is sufficient for multiple addresses and keys
 - **Easy Organization**: Easy management of funds across various addresses/accounts
 - e.g., THORWallet, one seed, many accounts, BTC, ETH, ...
- Disadvantages
 - User Experience → most wallets ask you to write down the seed phrase
 - Unexperienced user: what is this? Is this important?

- BIP39 mnemonic phrase
 - Seed phrase: series of words from a defined list
 - Essential for wallet backup and restoration
 - If lost, your cryptos are lost
- Seed Phrase Composition
 - Typically a sequence of 12 or 24 words
 - Encoding of 128bit or 256bit
- Let's see how it works:

BIP39

- Generate a random number 128 bit or 256
 - · Lets use 128bit for simplicity
 - Create random hex number (128bit)
 - hex=\$(hexdump -vn16 -e'4/4 "%08X" 1 "\n"'
 /dev/urandom)
 - padded_hex=\$(printf "%032s" "\$hex" | tr ' ' '0')
 - Convert to binary
 - padded_hex_bin=\$(echo \${padded_hex} | (echo "obase=2; ibase=16;" && cat) | bc)
 - padded_hash_bin=\$(echo \${hash_hex} | (echo "obase=2; ibase=16;" && cat) | BC_LINE_LENGTH=0 bc)
 - Word list has 2048 entries = 11bit
 - 12 words x 11 bit = 132bit, 4 bit wasted?
 - 4bit used as checksum append first 4 bit of sha256(rand number)
 - 24 words x 11 bit = 264bit, 8 bit checksum
 - hash_hex=\$(echo "\$padded_hex" | xxd -r -p |
 openssl dgst -sha256 -binary | xxd -p | tr -d
 '\n' | tr '[:lower:]' '[:upper:]')
 - echo \${padded_hex_bin}\${padded_hash_bin:0:4}

- Take first 11 bit, lookup word
 - $^-$ 11111100011 → 2019 → wisdom
- Take second 11 bit, lookup word
 - 11100101101 → 1837 → tortoise
- •
- Take the last 11 bit, lookup word
 - 00111111111 → 511 → divert
- Wrong words = checksum won't match

BIP39

- 256 bit, same, but 8bit checksum
 - Mnemonic Code Converter [link]
- Seed extension
 - 13th/25th word
- From mnemonic to seed
 - PBKDF2 function with mnemonic sentence as password, string "mnemonic" + passphrase as salt
 - Seed = PBKDF2("wisdom tortoise relief", "mnemonicyourpassphrase", 2048, ...)
- Seed can be used for BIP-32

BIP32/BIP44

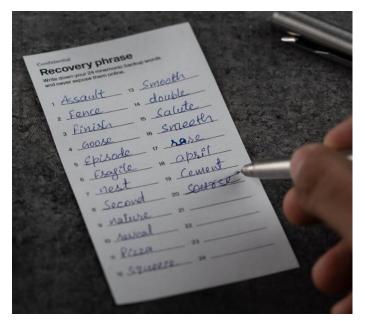
• BIP 32

BIP 32 - Hierarchical Deterministic Wallets Master Master Wallets / Wallet Addresses Seed Node Accounts Chains 18 18 18 . . . External 18 -m/0/0/0 m/0/0/1 m/0/0/k CKD(m/0, 0) m/0/0 18 18 18 18 18 Internal m/0 CKD(m/0, 1) -m/0/1/0 _ m/0/1/1 m/0/1/k m/0/1 CKD(m, 0) External 18 Entropy CKD(m/1, 0) 128 bits m/1/0 CKD(m, 1) 18 18 纖 S HMAC-SHA512 Internal . [8 m/1CKD(m/1, 1) m/1/1 m CKD(m, i) External 18 CKD(m/i, 0) m/i/0 18 18 18 18 18 Internal m/i CKD(m/i, 1) - m/i/1/0 m/i/1/1 m/i/1/k m/i/1 Depth = 3 Depth = 0Depth = 1 Depth = 2Child Key Derivation Function ~ $CKD(x,n) = HMAC-SHA512(x_{Chain}, x_{PubKey}||n)$

• BIP 44

- m / purpose' / coin_type' / account' / change / address_index
 - Purpose \rightarrow 44
 - Coin type
 - Bitcoin: m/44'/0'/2'/0/1
 - Ethereum: m/44'/60'/2'/0/1
 - Account \rightarrow Account 2
 - Change (Bitcoin specific resp. UTXO)
 - ⁻ Address_index \rightarrow Index 1
- Hardened vs. non-hardened
 - Hardened: hash(parent private key + index)
 - Non: hash(parent public key + index)
 - Security implications: leaking derived private keys
 - But: if someone has access to a non-hardened public key, they can generate all subsequent nonhardened public keys in the same branch.

ECC


- K = k × G
 - Private Key (k)
 - Base Point (G)
 - Public Key (K)
 - "×" is scalar multiplication on the elliptic curve
- Key derivation
 - $x \times K = x \times (k \times G)$
 - k is based on seed
 - x based on
 - hash(parent private key + index)
 - hash(parent public key + index)

- HD Wallets are the backbone of DeFi
- Be aware:
 - Single Point of Failure: The seed phrase represents a single point of failure; its compromise can lead to the loss of all associated assets
 - User Responsibility: In DeFi, users are solely responsible for their seed phrases. There's no central authority to appeal to for recovery if the seed is lost or stolen
 - Awareness: Educating users about the importance of securing their seed phrase and the mechanics of HD wallets is crucial in the DeFi space.
 - Best Practices: Promoting security best practices and the responsible use of DeFi services.

Best Practices Mnemonic

- When showing Metamask, I actually showed how **not** to do it
 - Write It Down: always write down the seed phrase, avoid digital storage unless it's encrypted. In addition

https://www.cypherock.com/blogs/post-seedless-wallets

- Use Metal Backups: For added durability against physical damage, store the seed phrase on a metal plate.
- Maintain Multiple Backups: prevent loss due to accidents or natural disasters
- Educate Yourself Continuously

