
30.09.2024

Blockchain (BlCh)
Solidity

Thomas Bocek

Solidity IDE
● https://remix.ethereum.org

● IDE e.g., in combination with Solidity Intellij plugin (not ideal)

https://remix.ethereum.org/
https://remix.ethereum.org/
https://remix.ethereum.org/

Check Deployment

● Etherscan is a public blockchain explorer
● Shows all transactions, blocks, understands tokens, also works for testnets

● Mine you first contract! 🎉

Gas: Ethereum’s Fuel
● Price that is paid for running a transaction or

a contract in the Ethereum VM (EVM)

● EVM: can execute instructions (opcodes) →
yellow paper (on the right)

● Unit of measuring computational work

● Every instruction needs to be paid for

● If you run out of gas, state is reverted, ETH
gone

https://ethereum.org/en/developers/docs/evm/

● SPDX License Identifier
● List, example: // SPDX-License-Identifier: MIT

● Private code: UNLICENSED

● Version Pragma

● pragma solidity ^0.4.24;
// not before 0.4.24, before 0.5.0

● pragma solidity >=0.4.22 <0.9.0;
// not before 0.4.22, before 0.9.0

Solidity Source File
● Importing

● import "filename";
//into the current global scope

● Comments

● // This is a single-line
comment.

● /*

This is a

multi-line comment.

*/

https://spdx.dev/
https://spdx.github.io/spdx-spec/v2.3/SPDX-license-list/

Solidity Structure
● State variables

● Stores state persistently, expensive to write!

contract SimpleStorage {
 uint256 storedData;
 // state variable
}

● Functions
● Internal or external calls

● function bid() public {

 // ...

}

● Visibility
● Specify from where functions can be called

— Internal / private: only callable internally
— Internal: can be overridden, private not

— External: only callable from outside
— Public: callable from internally / outside

● Types
● pure

— No state read or write
● view

— No state write but state read
● payable

— Can send or receive ETH

● Create a first contract

pragma solidity ^0.8.21;
// Minimal contract example
contract SimpleStorage {
 uint256 storedData; // State variable
}

● Install MetaMask

● Compile

● Compile and push «Deploy»

Solidity IDE

Solidity Structure
● Modifiers (e.g., OpenZeppelin)

● Called before the function, e.g.,

● modifier onlyOwner() {
 require(
 msg.sender == owner, "Only
owner allowed");
 _;
}

● function abort() public view
onlyOwner{
 // …
}

● Modifier / Function Overriding
● Functions can be overridden → virtual

● Function that overrides → override

● Example
● function test() public view virtual returns (bool)

https://docs.openzeppelin.com/contracts/4.x/access-control

Solidity Structure
● Events

● Communicate to (not from!) the outside

● event HighestBidIncreased(string msg);

function bid() public payable {

 // ...

 emit HighestBidIncreased(“hallo”);

}
● Sometimes misused for debugging (hint: use Hardh

at, console.log)

● Errors, use with revert

● error NotEnoughFunds(uint requested);

function transfer(address to) public {
if (balance < amount)
 revert NotEnoughFunds(amount);
}

● Often require is used, but more expensive

● require(balance >= amount, "Not enough");

● Not used that often: assert
— For catching bugs in your contract

● try/catch also supported, not for assert, but for
require/revert

https://hardhat.org/
https://hardhat.org/

● Events are a way for smart contracts written in Solidity to log that something has occurred

● Interested observers, notably JavaScript front ends for decentralized apps, can watch for
events and react accordingly.

Solidity – Events/Notifications

Solidity Structure
● Struct

● Define custom types

● contract Ballot {

 struct Voter {

 uint weight;

 bool voted;

 address delegate;

 uint vote;

 }

}

● Enum
● Custom types with a set of ‘constant values’

● contract Purchase {

 enum State { Created, Locked, Inactive }

}

Solidity Types and Operators
● Boolean

● ! (logical negation)

● && (logical conjunction, “and”)

● || (logical disjunction, “or”)

● == (equality)

● != (inequality)

● No short-circuit evaluation
— Probably you should not use it in other languages

as well (my opinion)

● Integers
● int/uint from 8 to 256 bit → e.g, uint256

— Comparisons: <=, <, ==, !=, >=, >
— Bit operators: &, |, ^ (exclusive or), ~ (negation)
— Shift operators: << (left shift), >> (right shift)
— Arithmetic operators: +, -, unary - (only for signed

integers), *, /, % (modulo), ** (exponentiation)
● Not yet ready: fixed / ufixed → ufixed128x18

(18 decimal points)

● Address
● address / address payable

— balance
— transfer
— send
— call, delegatecall and staticcall -

typically use:
ERC721(address).balanceOf(...)

https://en.wikipedia.org/wiki/Short-circuit_evaluation

Solidity Types and Operators
● Arrays

● Fixed size or dynamic (slices :)

● bytes1 … bytes32

● pop/push/length

● User-defined Value Types
● Rarely used in simple contracts

● Data Location
● storage: often copy

● memory: references

● Mapping ~hash table (without iteration)
● mapping(address => uint) public balances;

function update(uint newBalance) public {

 balances[msg.sender] = newBalance;

}
● Ternary Operator: ?
● Constant / immutable
● Using statement

● used often before Solidity 0.8 in SafeMath
● uint256 amount1 = amount1.sub(amount2);
● Now: uint256 amount1 -= amount2;

https://medium.com/coinmonks/soliditys-using-keyword-c05c18aaa088

Units and Builtin Variables / Control Structures
● Complete list [link]

● wei, gwei or ether

● seconds, minutes, hours, days and weeks

● blockhash, blocknumber

● block.prevrandao (new)

● block.timestamp

● msg.data

● msg.sender

● msg.value

● if, else, while, do, for, break,
continue, return

● Creating Contracts

● new within contract, web3.eth.Contract
from outside

● Constructor

● Inheritance
● Base contracts from OpenZeppelin

● contract ERC721 is Context,
ERC165, IERC721, IERC721Metadata

● abstract contract / interface

https://docs.soliditylang.org/en/v0.8.27/units-and-global-variables.html

Control Structures
● Can a contract deploy another contract?

● Yes
● contract ChildContract {

 string public data;
 constructor(string memory _data) {
 data = _data;
 }
}

contract FactoryContract {
 // address of the last deployed ChildContract
 address public lastDeployedAddress;
 function deployChild(string memory _data) public {
 // Deploy a new instance of ChildContract
 ChildContract child = new ChildContract(_data);
 // Store the address of the deployed contract
 lastDeployedAddress = address(child);
 }
}

● You probably don’t need this:
Inline Assembly
● assembly {

 // retrieve the size of
 //the code, this needs
 //assembly

 let size :=
 extcodesize(addr)

}

● unchecked{} → make variables
under/overflow

● Used to optimize gas usage

Many References / Tutorials
● https://consensys.github.io/smart-contract-best-practices/

● https://learnxinyminutes.com/docs/solidity/

● https://consensys.net/blog/developers/solidity-best-practices-for-smart-contract-security/

● https://www.tutorialspoint.com/solidity/solidity_basic_syntax.htm

● https://docs.soliditylang.org/en/v0.8.27/

● https://www.dappuniversity.com/articles/solidity-tutorial

● https://www.w3schools.io/blockchain/solidity-tutorials/

https://consensys.github.io/smart-contract-best-practices/
https://learnxinyminutes.com/docs/solidity/
https://consensys.net/blog/developers/solidity-best-practices-for-smart-contract-security/
https://www.tutorialspoint.com/solidity/solidity_basic_syntax.htm
https://docs.soliditylang.org/en/v0.8.27/
https://www.dappuniversity.com/articles/solidity-tutorial
https://www.w3schools.io/blockchain/solidity-tutorials/

	Slide 1
	Solidity IDE
	Check Deployment
	Gas: Ethereum’s Fuel
	Solidity - http://solidity.readthedocs.io
	Slide 6
	Solidity IDE (2)
	Slide 8
	Slide 9
	Solidity – Events/Notifications
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

