OST

Eastern Switzerland
University of Applied Sciences

Blockchain (BICh)

Solidity

Thomas Bocek
30.09.2024

Solidity IDE

* https://remix.ethereum.org

IDE e.g., in combination with Solidity Intellij plugin (not ideal)

FILE EXPLORER

Remix IDE

Featured Plugins
%

SoLDITY

Resources

Gist GitHub Ipfs

OOST

https://remix.ethereum.org/
https://remix.ethereum.org/
https://remix.ethereum.org/

Check Deployment

* Etherscan is a public blockchain explorer

- Mine you first contract! €

4 Remix - Solidity IDE X @ Ropsten Accounts, Address Ar X +
“ c & https://ropsten.etherscan.io/address/Oxca0d82b99951028ca0flcc547a32e70dd6fale04 %t O = e :
ROPETEN ROPSTEN (Revival) TESTNET = Search by Address / Txhash / Block / Token / Ens E Language
Etherscan
J The Ethereum Block Explorer

HOME BLOCKCHAIN v TOKEN ~

B8l Contract 0xCa0D82b39951028¢A0f1 CC547A32e70dD6fa0E0S |y

Contract Overview

Shows all transactions, blocks, understands tokens, also works for testnets

MISC

Home / Accounts / Address

ara s
E& Misc: More Options. u
Balance: 0 Ether Contract Creator: 0xb978fcfeaad8313... at txn Ox1elec520esd4e...
Transactions: 11xn
I Latest 1 txn =
TxHash Block Age From To Value
0Ox1elec520eeddfe... 4129784 45 mins ago 0Oxb978fcfeaad8313... “ [Contract Creation 0 Ether 0.000068784

| Download €SV Export &.]

OST

Gas: Ethereum’s Fuel

* Price that is paid for running a transaction or
a contract in the Ethereum VM (EVM)

* EVM: can execute instructions (opcodes) —
yellow paper (on the right)

* Unit of measuring computational work
* Every instruction needs to be paid for

* [f you run out of gas, state is reverted, ETH
gone

Weero =
W -fm se —

APPENDIX G. FEE SCHEDULE

The fee schedule i is a tuple of 31 scalar values corresponding to the relative costs, in gas, of a munber of abstract
operations that a transaction may effect.

Name

G:ero

Ghase
B
Glow

Ginia

Ghigh
Gezteode
Ghaianee
Gsiond
Gjumpdest
Glaser
Glareset
HRsctear
IEtnenne
Giuicide
Gereate
Geodedeposit
Geant
Gealivatue
Geallstipend
Ghrewaccount
Bl
Gezpbyte
Ginemory
(."[xcreate
Grzdatasera
Grzdatanonzero
Giransaction
Giog
Glogdata
Glagtopic
Gahas
Gehasword
Geopy

Ghiockhash

Value

2300
25000

32000
68
21000

375

375

Description®

Nothing paid for operations of the set W. ...

Amount of gas to pay for operations of the set Wi, ...
Amount of gas to pay for operations of the set W.,yiow-
Amount of gas to pay for operations of the set Wig,.
Amount of gas to pay for operations of the set W, ;.
Amount of gas to pay for operations of the set Wi .
Amount of gas to pay for operations of the set W, oae-
Amount of gas to pay for a BALANCE operation.

Paid for a SLOAD operation.

Paid for a JUMPDEST operation.

Paid for an SSTORE operation when the storage value is set to non-zero from zero.
Paid for an SSTORE operation when the storage value's zeroness remains unchanged or is set to zero.

Refund given (added into refund counter) when the storage value is set to zero from non-zero.

Refund given (added into refund counter) for suiciding an account.

Amount of gas to pay for a SUICIDE operation.

Paid for a CREATE operation.

Paid per byte for a CREATE operation to succeed in placing code into state.
Paid for a CALL operation.

Paid for a non-zero value transfer as part of the CALL operation.

A stipend for the called contract subtracted from Goapivatue for a non-zero value transfer.

Paid for a CALL or SUICIDE operation which creates an account.
Partial payment for an EXP operation.

Partial payment when multiplied by [loga.,(exponent)] for the EXP operation.

Paid for every additional word when expanding memory.

Paid by all contract-creating transactions after the Homestead transition.
Paid for every zero byte of data or code for a transaction.

Paid for every non-zero byte of data or code for a transaction.

Paid for every transaction.

Partial payment for a LOG operation.

Paid for each byte in a LOG operation’s data.

Paid for each topic of a LOG operation.

Paid for each SHA3 operation.

Paid for each word (rounded up) for input data to a SHA3 operation.

Partial payment for *COPY operations, multiplied by words copied. rounded up.

Payment for BLOCKHASH operation.

{STOP, RETURN}
{ADDRESS, ORIGIN, CALLER, CALLVALUE, CALLDATASIZE, CODESIZE, GASPRICE, COINBASE,

TIMESTAMP, NUMBER, DIFFICULTY, GASLIMIT, POP, PC, MSIZE, GAS}
Wieryiow = {ADD, SUB, NOT, LT, GT, SLT, SGT, EQ, ISZERO, AND, OR, XOR, BYTE, CALLDATALOAD,
MLOAD, MSTORE, MSTORER, PUSH*, DUP*, SWAP*}
Wiw = {MUL, DIV, SDIV, MOD, SMOD, SIGNEXTEND}
Winia = {ADDMOD, MULMOD, JUMP}
Whign = {JUMPI}
Wesrcode = {EXTCODESIZE}

OST

https://ethereum.org/en/developers/docs/evm/

Solidity Source File

 SPDX License ldentifier * Importing

List, example: /[SPDX-License-ldentifier: MIT * import "filename";

Private code: UNLICENSED //into the current global scope
* Version Pragma Comments

pragma solidity 70.4.24; * // This is a single-line

// not before 0.4.24, before 0.5.0 comment.

pragma solidity >=0.4.22 <0.9.0; ©/x

// not before 0.4.22, before 0.9.0 This ds a

multi-line comment.

*/

OOST

https://spdx.dev/
https://spdx.github.io/spdx-spec/v2.3/SPDX-license-list/

Solidity Structure

e State variables

-+ Stores state persistently, expensive to write!

contract SimpleStorage {
uint256 storedData;
// state variable

}

 Functions
« |Internal or external calls

* function bid() public {
//

* Visibility
Specify from where functions can be called

— Internal / private: only callable internally
— Internal: can be overridden, private not

— External: only callable from outside
— Public: callable from internally / outside

° Types
* pure
— No state read or write
* view
— No state write but state read
* payable
— Can send or receive ETH

OOST

Solidity IDE
* Create a first contract

pragma solidity 70.8.21;
// Minimal contract example
contract SimpleStorage {
uint256 storedData; // State variable

}

* |nstall MetaMask
* Compile

e Compile and push «Deploy»

OOST

Solidity Structure

* Modifiers (e.g., OpenZeppelin) * Modifier / Function Overriding
- Called before the function, e.g., + Functions can be overridden - virtual
 modifier onlyOwner () A « Function that overrides — override
require(
msg.sender == owner, "Only
owner allowed"); Example
) -3 » function test() public view virtual returns (bool)
function abort() public view
onlyOwner{
/] .
}

OOST

https://docs.openzeppelin.com/contracts/4.x/access-control

Solidity Structure

e Events * Errors, use with revert

Communicate to (not from!) the outside * error NotEnoughFunds(uint requested);

event HighestBidIncreased(string msg); . .
function transfer(address to) public {
function bid() public payable { if (balance < amount)

y revert NotEnoughFunds (amount) ;

}

emit HighestBidIncreased(“hallo”); Often require is used, but more expensive

I require(balance >= amount, "Not enough");
Sometimes misused for debugging (hint: use Hardh
at, console.log) * Not used that often: assert

— For catching bugs in your contract

try/catch also supported, not for assert, but for

require/revert
(::>()ST

https://hardhat.org/
https://hardhat.org/

Solidity — Events/Notifications

* Events are a way for smart contracts written in Solidity to log that something has occurred

* Interested observers, notably JavaScript front ends for decentralized apps, can watch for

events and react accordingly.

transaction cost

43044 gas h

execution cost

21580 gas WY

hash

0x306bad4bis8lceas0cfs2disacdal? lacal40a5dd707 7cba50c03E77a82ae537 Yy

input

Oxd2a...00064 Y

decoded input

{

"uint256 newBalance": “100"
[&
decoded output {1 Iy
logs [
{
"from": "Oxe92alldiedi4asddicic2iaa’®idladgiasaiibiat,
"topic": "Ox5£66d2a93b609boa596bT5cadbbledf3fTcaidd4b3iba1715T7E£304d107658375",
"ewent": "Update"”,
"args": {
"0": "0xCA3SbIdI15458EFS40aDesladdredF44EA£aT330",
"t "100";
" user": "OxCA3ISbId915458EF540aDeslsiddre2r44E4£a733c",
" mewBalance": "100",
"length": 2
}
¥
B
| -
value 0 wei

U

Solidity Structure
* Struct
Define custom types
contract Ballot {
struct Voter {
uint weight;
bool voted;
address delegate;

uint vote;

Enum

Custom types with a set of ‘constant values’

contract Purchase {

enum State { Created,

Locked, Inactive }

OOST

Solidity Types and Operators

* Boolean ~ Comparisons: <=, <, ==, I=, >=, >
— Bit operators: &, |, ™ (exclusive or), ~ (negation)
— Shift operators: << (left shift), >> (right shift)

* && (logical conjunction, “and”) — Arithmetic operators: +, -, unary - (only for signed
. . . . t ’*,/’0/ dl ’** t t
- || (logical disjunction, “or”) integers) o (modulo), ** (exponentiation)

I (logical negation)

_ * Not yet ready: fixed / ufixed - ufixed128x18
« == (equality) (18 decimal points)
- 1= (inequality) * Address
* No short-circuit evaluation * address / address payable
— Probably you should not use it in other languages ~— balance
as well (my opinion) - transfer
* Integers ~ send
* int/uint from 8 to 256 bit - e.g, uint256 - call, delegatecall and staticcall-
typically use:

ERC721 (address) .balanceOf(...)

OOST

https://en.wikipedia.org/wiki/Short-circuit_evaluation

Solidity Types and Operators

* Arrays
Fixed size or dynamic (slices :)
bytesl .. bytes32
pop/push/length

* User-defined Value Types

Rarely used in simple contracts

e Data Location
- storage: often copy

memory. references

Mapping ~hash table (without iteration)
mapping(address => uint) public balances;
function update(uint newBalance) public {

balances[msg.sender] = newBalance;
}

Ternary Operator: ?

Constant / immutable

Using statement
used often before Solidity 0.8 in SafeMath
uint256 amountl = amountl.sub(amount2);

Now: uint256 amountl -= amount2;

OOST

https://medium.com/coinmonks/soliditys-using-keyword-c05c18aaa088

Units and Builtin Variables | Control Structures

* Complete list [link] e if, else, while, do, for, break,

. wei, gwei or ether continue, return

-+ seconds, minutes, hours, days and weeks * Creating Contracts
blockhash, blocknumber - new within contract, web3.eth.Contract
block.prevrandao (new) from outside
block.timestamp Constructor
msg.data * |nheritance
msg.sender - Base contracts from OpenZeppelin
msg.value - contract ERC721 is Context,

ERC165, IERC721, IERC721Metadata

abstract contract / interface

OOST

https://docs.soliditylang.org/en/v0.8.27/units-and-global-variables.html

Control Structures

* Can a contract deploy another contract?
Yes

* contract ChildContract {
string public data;
constructor (string memory _data) {
data = _data;
}

}

contract FactoryContract {

// address of the last deployed ChildContract

address public lastDeployedAddress;

function deployChild(string memory _data) public {
// Deploy a new instance of ChildContract
ChildContract child = new ChildContract(_data);
// Store the address of the deployed contract
lastDeployedAddress = address(child);

* You probably don’t need this:
Inline Assembly

« assembly {
// retrieve the size of
//the code, this needs
//assembly

let size :=
extcodesize(addr)

}

* unchecked{} - make variables
under/overflow

+ Used to optimize gas usage

OOST

Many References | Tutorials

https://consensys.github.io/smart-contract-best-practices/

https://learnxinyminutes.com/docs/solidity/

https://consensys.net/blog/developers/solidity-best-practices-for-smart-contract-security/

https://www.tutorialspoint.com/solidity/solidity _basic_syntax.htm
https://docs.soliditylang.org/en/v0.8.27/
https://www.dappuniversity.com/articles/solidity-tutorial

https://www.w3schools.io/blockchain/solidity-tutorials/

OOST

https://consensys.github.io/smart-contract-best-practices/
https://learnxinyminutes.com/docs/solidity/
https://consensys.net/blog/developers/solidity-best-practices-for-smart-contract-security/
https://www.tutorialspoint.com/solidity/solidity_basic_syntax.htm
https://docs.soliditylang.org/en/v0.8.27/
https://www.dappuniversity.com/articles/solidity-tutorial
https://www.w3schools.io/blockchain/solidity-tutorials/

	Slide 1
	Solidity IDE
	Check Deployment
	Gas: Ethereum’s Fuel
	Solidity - http://solidity.readthedocs.io
	Slide 6
	Solidity IDE (2)
	Slide 8
	Slide 9
	Solidity – Events/Notifications
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

