

Lecture 10

Introduction

- Bitcoin is an <u>experimental</u> digital currency
 - Bitcoin is fully peer-2-peer (no central entity)
 - 1st Bitcoin issued on January 3, 2009
 - Smallest unit: 0.00000001 BTC (1 satoshi)
- Key characteristics
 - Maximum of ~21 million BTC
 - Every transaction broadcast to all peers
 - Every peers knows all transactions (~400 GByte as of today)
 - Validation by proof-of-work (partial hash collision)
 - Difficult to fake proof-of-work
 - No double-spending
- The initiator is unknown so far

Who is Satoshi Nakamoto?

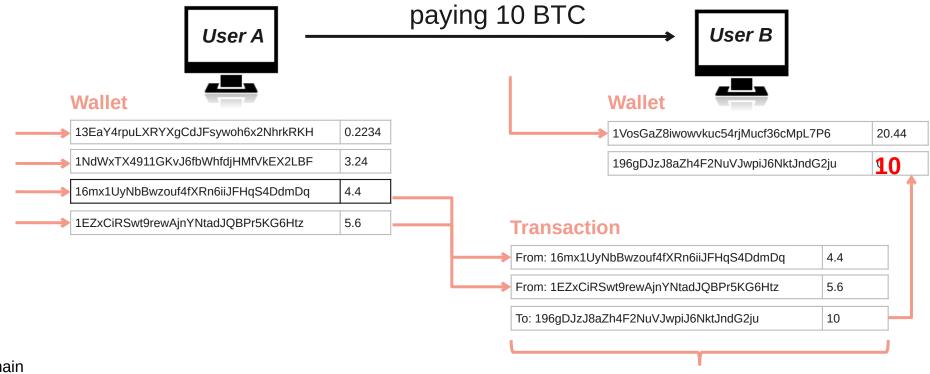
- The New Yorker believes that Satoshi Nakamoto was Michael Clear.
 - Analyzed texts from Nakamoto and searching for linguistic clues
 - 2nd possible candidate Vili Lehdonvirta
- Fast Company argues its either Neal King, Vladimir Oksman, or Charles Bry.
- Other names suggested: Martii Malmi (involved in Bitcoins since the beginning), Jed McCaleb (founder of Ripple), Donal O'Mahony, Michael Peirce, Hitesh Tewari (authors of Electronic Payment Sy stems for E-Commerce 2nd edition), Shinichi Mochizuki (Math Prof. Kyoto University), Hal Finney, Michael Weber, Wei Dai, Nick Szabo, Craig Wright (wired article),
- Dorian S Nakamoto (a guy with the same name)
- Satoshi is probably rich, first miner, may have ~1mio BTC
- Craig Wright, May 2016: «I'm Satoshi Nakamoto», fails to deliver proof

Bitcoin - Introduction

- Not relying on trust, but on strong cryptography
- Weak anonymity (pseudonimity)
 - All peers know all transactions
 - Clustering: e.g. if a transaction has multiple input addresses, assume those addresses belong to the same wallet. (example)
- Not controlled by a single entity
 - Development community, no central bank forks Bitcoin Cash, SV
- BIP: Bitcoin Improvement Proposals
- Bitcoins can be exchange for real currencies
 - Several companies allow to exchange BTC for Dollar, Euro, ...
- US, CH considered Bitcoin friendly, China (energy), Turkey not that much

Mechanism

- A wallet has public-private keys (wallet.dat)
 - Public key, ECDSA 256 bit → Bitcoin address (can receive bitcoins)
 - Simple address ~ base58(RIPEM160(Sha256(ecdsa public key)))
 - E.g. 1GCeaKuhDYnNLNR6LGmBtKhPqEJD4KeEtF
 - Private key used for signing transactions


- Peer A wants to send BTC to peer B → creates transaction message
- Transaction contains input / output
 - where the BTC came from and where it goes
- Peer A broadcasts the transaction to all the peers in the network
- Transaction stored in blocks → block is created / verified ~10min

Key Bitcoin Operations

- Private key authorizes the transaction ("access")
 - If keys are stolen, thief may use "your" coins
 - If keys are lost, coins are lost
 - In UTXO (unspent transaction output) systems, complete output is spent

Bitcoin Scripting Language

ScriptSig

PUSHDATA

signature data and SIGHASH_ALL

PUSHDATA

public key data

ScriptPubKey

OP DUP

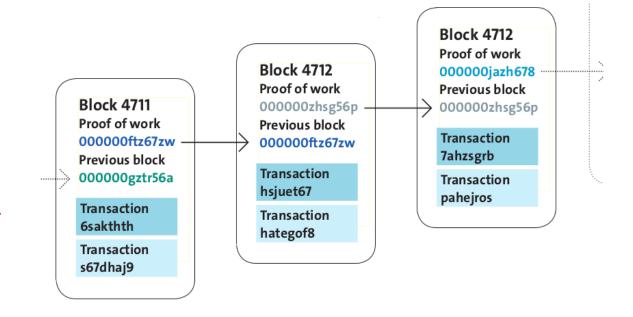
OP HASH160

PUSHDATA

Bitcoin address (public key hash)

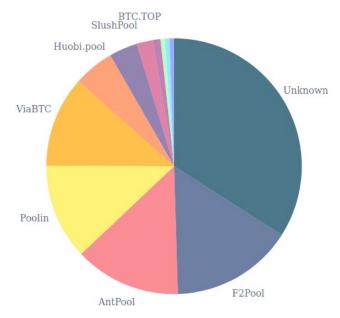
OP_EQUALVERIFY

OP_CHECKSIG


- Non-turing complete (e.g. No loops)
- With scripts
 - Multisig, n-of-m, escrow and dispute mediation
 - Micropayment channel, refund tx in future
- Opcodes <u>all codes</u>
 - Data operations
 - OP_PUSHDATA1, OP_PUSHDATA4,...
 - Flow control
 - OP_IF, OP_ELSE, ...
 - Stack
 - OP_DUP, OP_SWAP, ...
 - Arithmetic
 - OP ADD, OP ABS, ...
 - Crypto
 - OP_SHA256, OP_CHECKSIGVERIFY

Blockchain

- Transactions are collected in blocks
 - New block created approximately every 10 min
- Blocks contain solved crypto puzzles
 - In the form of partial <u>hash collisions</u> (SHA256)
- A block has a pointer to previous <u>block</u> → <u>Block block</u>

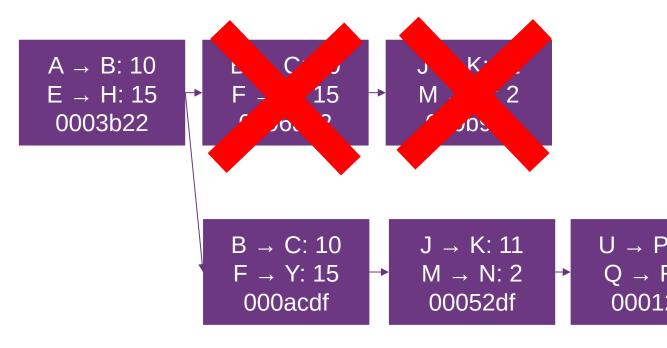

- Creation of blocks is called mining (reward)
 - Miners use highly specialized hardware!

Mechanism - Mining

- Couple of big miners
 - Miners specialized, AMD GPUs, FPGA,
 ASIC (application-specific integrated circuit) [1][2][
 3]

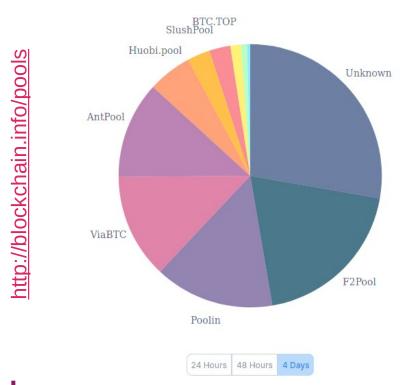
http://blockchain.info/pools

- Mining = creating valid blocks
- Blocks are linked to previous blocks
 - Longest block survive (most difficult)
- Different level of confirmations
 - 3-6 block conf. is considered secure
- Dangerous if someone has more than 50% computing power
 - Can exclude and modify the ordering of transactions



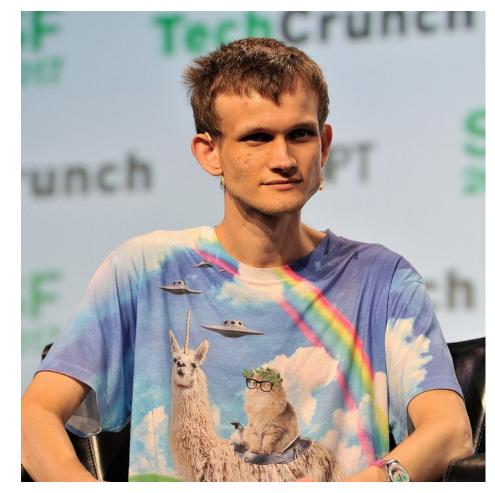
Lecture 11

51% Attack


- "If a majority of CPU power is controlled by honest nodes, the honest chain will grow the fastest and outpace any competing chains."
 - https://bitcoin.org/bitcoin.pdf
- PoW: majority of hashing power, PoS: majority of coins
- How expensive is a 51% attack?
 - Buy an attack?
- Double spend, or rollback transactions
 - X is an exchange
 - Mine secretly, Y is your address
 - X arrived payout (1 block conf.)
 - You mine faster, broadcast secret chain
 - Tx $F \rightarrow X$: 15 never happened, goes to Y

51% Attack

- Control over 50% of the scarce resources
 - Pools: cooperative puzzle solving
 - Solo: competitive puzzle solving



- 07.08.2021: Bitcoin SV rocked by three 51% attacks in as many months [link]
- 30.08.2020: Ethereum Classic suffers another 51% attack [link]
 - "The total value of the double spends that we have observed thus far is 219,500 ETC (~\$1.1M)."
- 23.04.2020: DeFi Platform Suffers 51%
 Attack From Its Top Miners or Does It? [link]
 - "resulted in \$6.7 million worth of the USDpegged stablecoin pUSD"
- 08.11.2020: Grin network hit with 51% attack while GRIN token remains resilient [link]

Bitcoin / Ethereum

- Bitcoin vs. Ethereum
 - Implementing new features slow
 - Many Bitcoin hardforks (segregated witness vs. increasing block size voting) Cash vs. SV
 - Bitcoin Script limited
 - Lightning network
 - Pros and Cons no silver bullet
- Ethereum (1 ETH ~1900\$)
 - Generalized blockchain (loops, arithemitcs, etc.)
 - White paper released in December 2013
 - Protocols designed from scratch (not like Litecoin, Peercoin)
 - Ethereum foundation located in Zug (initiator known) non-profit foundation
 - Mining reward \sim block every \sim 14s $-\sim$ 2 ETH ("always", unlike Bitcoin)

Vitalik Buterin

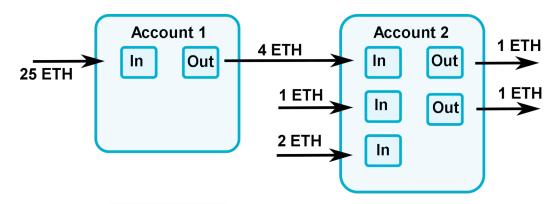
Blocktime and Gas

- Block time: ~14-15s
 - Ice age
- Smart Contracts are turing complete
 - Every instruction needs to be paid for (example)
- Gas price
 - If you run out of gas, state is reverted, ETH gone

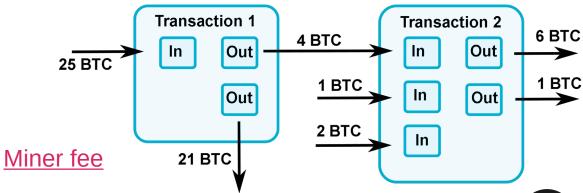
```
\begin{split} W_{zero} &= \{ \text{STOP, RETURN} \} \\ W_{base} &= \{ \text{ADDRESS, ORIGIN, CALLER, CALLVALUE, CALLDATASIZE, CODESIZE, GASPRICE, COINBASE,} \\ &\quad \text{TIMESTAMP, NUMBER, DIFFICULTY, GASLIMIT, POP, PC, MSIZE, GAS} \} \\ W_{verylow} &= \{ \text{ADD, SUB, NOT, LT, GT, SLT, SGT, EQ, ISZERO, AND, OR, XOR, BYTE, CALLDATALOAD,} \\ &\quad \text{MLOAD, MSTORE, MSTORES, PUSH*, DUP*, SWAP*} \} \\ W_{low} &= \{ \text{MUL, DIV, SDIV, MOD, SMOD, SIGNEXTEND} \} \\ W_{mid} &= \{ \text{ADDMOD, MULMOD, JUMP} \} \\ W_{high} &= \{ \text{JUMPI} \} \\ W_{extcode} &= \{ \text{EXTCODESIZE} \} \end{split}
```

Appendix G. Fee Schedule

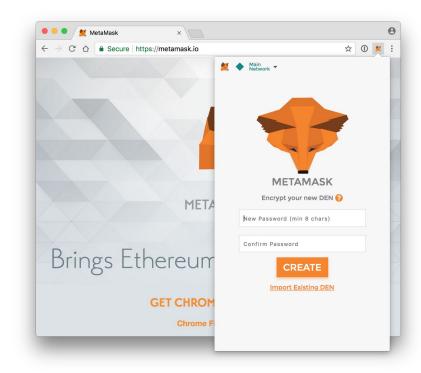
The fee schedule G is a tuple of 31 scalar values corresponding to the relative costs, in gas, of a number of abstract operations that a transaction may effect.


erations that a t	ransactio	on may effect.
Name	Value	Description*
G_{zero}	0	Nothing paid for operations of the set W_{zero} .
G_{base}	2	Amount of gas to pay for operations of the set W_{base} .
$G_{verylow}$	3	Amount of gas to pay for operations of the set $W_{verylow}$.
G_{low}	5	Amount of gas to pay for operations of the set W_{low} .
G_{mid}	8	Amount of gas to pay for operations of the set W_{mid} .
G_{high}	10	Amount of gas to pay for operations of the set W_{high} .
$G_{extcode}$	700	Amount of gas to pay for operations of the set $W_{extcode}$.
$G_{balance}$	400	Amount of gas to pay for a BALANCE operation.
G_{sload}	200	Paid for a SLOAD operation.
$G_{jumpdest}$	1	Paid for a JUMPDEST operation.
G_{sset}	20000	Paid for an SSTORE operation when the storage value is set to non-zero from zero.
G_{sreset}	5000	Paid for an SSTORE operation when the storage value's zeroness remains unchanged or is set to
R_{sclear}	15000	Refund given (added into refund counter) when the storage value is set to zero from non-zero.
$R_{suicide}$	24000	Refund given (added into refund counter) for suiciding an account.
$G_{suicide}$	5000	Amount of gas to pay for a SUICIDE operation.
G_{create}	32000	Paid for a CREATE operation.
$G_{codedeposit}$	200	Paid per byte for a CREATE operation to succeed in placing code into state.
G_{call}	700	Paid for a CALL operation.
$G_{callvalue}$	9000	Paid for a non-zero value transfer as part of the CALL operation.
$G_{callstipend}$	2300	A stipend for the called contract subtracted from $G_{callvalue}$ for a non-zero value transfer.
$G_{newaccount}$	25000	Paid for a CALL or SUICIDE operation which creates an account.
G_{exp}	10	Partial payment for an EXP operation.
$G_{expbyte}$	10	Partial payment when multiplied by $\lceil \log_{256}(exponent) \rceil$ for the EXP operation.
G_{memory}	3	Paid for every additional word when expanding memory.
G_{txcreate}	32000	Paid by all contract-creating transactions after the Homestead transition.
$G_{txdatazero}$	4	Paid for every zero byte of data or code for a transaction.
$G_{txdatanonzero}$	68	Paid for every non-zero byte of data or code for a transaction.
$G_{transaction}$	21000	Paid for every transaction.
G_{log}	375	Partial payment for a LOG operation.
$G_{logdata}$	8	Paid for each byte in a LOG operation's data.
$G_{logtopic}$	375	Paid for each topic of a LOG operation.
G_{sha3}	30	Paid for each SHA3 operation.
$G_{sha3word}$	6	Paid for each word (rounded up) for input data to a SHA3 operation.
G_{copy}	3	Partial payment for *COPY operations, multiplied by words copied, rounded up.
$G_{blockhash}$	20	Payment for BLOCKHASH operation.

Account vs UTXO - Introduction


Account-based

- Global state stores a list of accounts with balances and code
- Transaction is valid if the sending account has enough balance
 - Balance on sender is deducted, new balance
- If the receiving account has code, the code runs, and state may be changed
 - Signature must match sending account


UTXO-based

- Every referenced input must be valid and not yet spent
- Total value of the inputs must equal or exceed the total value of the outputs
 - You always spend all outputs
- Transaction must have a signature matching the owner of the input for every input
 - Script determines if input is valid

MetaMask

- MetaMask
 - Web3 browser plugin to make Ethereum transactions in browsers
 - Manage your key pairs and sign blockchain transactions
 - MetaMask injects javascript library ethers.js
 - Uses infura
- Remix IDE: https://remix.ethereum.org
- Testnet: rinkeby/goerli/ropsten merge on 02.06.2022)
 - https://rinkeby.etherscan.io/ (blockchain explorer)


```
[05-08|17:14:43] Commit new mining work
                                                          number=891910 txs=0 uncles=0 elapsed=392.257μs
[05-08|17:15:06] Imported new chain segment
                                                                         mgas=0.000 elapsed=17.225ms mgasps=0.000 number=891910 hash=812c12...de3c2e
[05-08|17:15:06] Commit new mining work
                                                                r=891911 txs=2 uncles=0 elapsed=6.039ms
[05-08|17:15:16] Successfully sealed new block
                                                               r=891911 hash=9efde0...7642c5
[05-08|17:15:16] 🔨 mined potential block
[05-08|17:15:16] Commit new mining work
                                                               r=891912 txs=0 uncles=0 elapsed=507.117µs
```

No mining (use twitter with https://www.rinkeby.io)

Example

- Installation
 - npm install
 - ./node_modules/.bin/webpack
 - ./node_modules/.bin/webpack serve
- Open Browser: http://localhost:8080/


```
draft@home: ~/git/VSS-web3js
File Edit View Search Terminal Help
draft@home:~/git/VSS-web3js$ ./node_modules/.bin/webpack-dev-server
   wdsj: Project is running at http://localhost:8080/
  wds]: webpack output is served from /
  wdm: Hash: c4c7c0d3279286de6649
Version: webpack 4.7.0
Time: 1139ms
Built at: 2018-05-06 12:57:52
                                   Size Chunks
                                                             Chunk Names
                                                  [emitted]
nain.c4c7c0d3279286de6649.js
                                947 KiB
                                           main
                                                            main
                  index.html 395 bytes
                                                  [emitted]
Entrypoint main = main.c4c7c0d3279286de6649.js
 ./node modules/ansi-html/index.js] 4.16 KiB {main} [built]
 ./node_modules/loglevel/lib/loglevel.js] 7.68 KiB {main} [built]
 ./node_modules/strip-ansi/index.js] 161 bytes {main} [built]
 ./node_modules/url/url.js] 22.8 KiB {main} [built]
 ./node_modules/vue/dist/vue.esm.js] 286 KiB {main} [built]
 ./node_modules/webpack-dev-server/client/index.js?http://localhost:8080] (webpack)-dev-server/c
lient?http://localhost:8080 7.75 KiB {main} [built]
 ./node_modules/webpack-dev-server/client/overlay.js] (webpack)-dev-server/client/overlay.js 3.5
8 KiB {main} [built]
[./node_modules/webpack-dev-server/client/socket.js] (webpack)-dev-server/client/socket.js 1.05
KiB {main} [built]
[./node_modules/webpack/hot sync ^\.\/log$] (webpack)/hot sync nonrecursive ^\.\/log$ 170 bytes
 ./node_modules/webpack/hot/emitter.js] (webpack)/hot/emitter.js 77 bytes {main} [built]
 ./node_modules/webpack/hot/log.js] (webpack)/hot/log.js 1010 bytes {main} [optional] [built]
 ./src/App.vue] 908 bytes {main} [built]
[./src/App.vue?vue&type=template&id=7ba5bd90] 194 bytes {main} [built]
[0] multi (webpack)-dev-server/client?http://localhost:8080 ./src 40 bytes {main} [built]
 ./src/index.js] 129 bytes {main} [built]
    + 63 hidden modules
Child html-webpack-plugin for "index.html":
   Entrypoint undefined = index.html
    [./node_modules/html-webpack-plugin/lib/loader.js!./index.html] 527 bytes {0} [built]
    [./node_modules/lodash/lodash.js] 527 KiB {0} [built]
    [./node_modules/webpack/buildin/global.js] (webpack)/buildin/global.js 489 bytes {<mark>0</mark>} [built]
    [./node_modules/webpack/buildin/module.js] (webpack)/buildin/module.js 497 bytes {0} [built]
   wdmj: Compiled successfully.
```

