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Distributed Systems Motivation
● Why Distributed Systems

● Scaling

● Location

● Fault-tolerance (bitflips, outages)
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https://en.wikipedia.org/wiki/Moore%27s_law
https://blogs.oracle.com/linux/attack-of-the-cosmic-rays-v2
https://subtelforum.com/category/cable-faults-maintenance/
https://www.inkandswitch.com/local-first.html
https://www.submarinecablemap.com/
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Load Balancing
● What is load balancing

● Distribution of workloads across multiple computing 
resources
— Workloads (requests)
— Computing resources (machines)

● Distributes client requests or network load efficiently 
across multiple servers [link]
— E.g., service get popular, high load on service

→ horizontal scaling

● Why load balancing
● Ensures high availability and reliability by sending 

requests only to servers that are online
● Provides the flexibility to add or subtract servers as 

demand dictates
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https://www.nginx.com/resources/glossary/load-balancing
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CORS
● CORS =  Cross-Origin Resource Sharing

● For security reasons, browsers restrict cross-origin 
HTTP requests initiated from scripts (among others)

● Mechanism to instruct browsers that runs a resource 
from origin A to run resources from origin B

● Solution

● Use reverse proxy with builtin webserver, e.g., nginx, or 
user reverse proxy with external webserver.

→ The client only sees the same origin for the API and 
the frontend assets

● Access-Control-Allow-Origin: https://foo.example

→ For dev: Access-Control-Allow-Origin: *

● w.Header().Set("Access-Control-Allow-Origin", 
"*")

● Reverse proxy
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https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://foo.example/
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Introduction
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• Virtual machines • Container • Both
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Distributed Systems Categorization
“Controlled” Distributed Systems

● 1 responsible organization

● Low churn

● Examples:
● Amazon DynamoDB

● Client/server

● “Secure environment”

● High availability

● Can be homogeneous / heterogeneous

“Fully” Decentralized Systems

● N responsible organizations

● High churn

● Examples:
● BitTorrent

● Blockchain

● “Hostile environment”

● Unpredictable availability

● Is heterogeneous
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Distributed Systems Categorization
“Controlled” Distributed Systems

● Mechanisms that work well:
● Consistent hashing (DynamoDB, Cassandra)

● Master nodes, central coordinator

● Network is under control or client/server → 
no NAT issues

“Fully” Decentralized Systems

● Mechanisms that work well:
● Consistent hashing (DHTs)

● Flooding/broadcasting - Bitcoin

● NAT and direct connectivity huge problem
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Distributed Systems Categorization
“Controlled” Distributed Systems

● Consistency
● Leader election (Zookeeper, Paxos, Raft)

● Replication principles
● More replicas: higher availability, higher 

reliability, higher performance, better 
scalability, but: requires maintaining 
consistency in replicas

● Transparency principles apply

“Fully” Decentralized Systems

● Consistency 
● Weak consistency: DHTs
● Nakamoto consensus (aka proof of work)
● Proof of stake – Leader election, PBFT 

protocols - Is Bitcoin eventually consistent? 
— Some argue no, some argue it has even stronger 

guarantees [link]

● Replication principles apply to fully 
decentralized systems as well

● Transparency principles apply

https://hackingdistributed.com/2016/03/01/bitcoin-guarantees-strong-not-eventual-consistency/
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Distributed Systems Categorization
● Spring Term – Distributed Systems (DSy)

● Tightly/loosely coupled

● Heterogeneous systems

● Small-scale systems

● Distributed systems

(we will also talk about blockchains in this 
lecture)

● Fall Term – Blockchain (BlCh)

● Loosely coupled

● Heterogeneous systems

● Large-scale systems

● Decentralized systems

(we will also talk about distributed systems in 
this lecture, but DSy is highly recommended)
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Pro/Cons - Opinion
● Monorepo

● Tight coupling of projects
— E.g., generating openapi.yml from backend, 

generate types for frontend → simply copy
● Everyone sees all code / commits
● Encourages code sharing within organization
● Scaling: large repos, specialized tooling

● Polyrepo
● Loose coupling of projects

— If you want to generate openapi.yml, you need 
access from the backend repository to the frontend 
(e.g., curl+token)

● Fine grained access control
● Encourages code sharing across organizations
● Scaling: many projects, special coordination

● Opinion: Accenture - “From my experience, for a smaller team, starting with mono-repo is 
always safe and easy to start. Large and distributed teams would benefit more from poly-repo”

● My opinion: for small teams and “independent” project, use polyrepo. (I worked with small 
teams with mono and polyrepo, I have worked in big projects with polyrepos, but never in a big 
project with monorepos). If you have a tight coupling between projects (OpenAPI), use 
monorepos.

● Other opinion (sales pitch): https://monorepo.tools 
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https://www.accenture.com/us-en/blogs/software-engineering-blog/how-to-choose-between-mono-repo-and-poly-repo
https://monorepo.tools/
https://github.com/joelparkerhenderson/monorepo-vs-polyrepo#key-differences
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Access Token / Refresh Token
● Access Token only short lifetime, e.g., 

10min.
● If public key / secret is known, the content in 

the token can be trusted, e.g., in the serivce

● Can have userId, role, etc. 
— No need to query DB for those information, e.g.: 

● Refresh Token longer lifetime, e.g., 6 month
● A refresh token is used to get a new access 

token 

● IAM / Auth server creates access tokens

● Only access token, with long lifetime
● If a user credential is revoked – how to inform 

every service?

● Only refresh token
● Tightly coupled Service/Auth, every request to 

Service, Auth needs to be involved for every 
access

● Access + Refresh token
● If a user credential is revoked, user has max. 

10min more to access service

● Auth only involved if access token is expired

type TokenClaims struct {
MailFrom string `json:"mail_from,omitempty"`
MailTo   string `json:"mail_to,omitempty"`
jwt.Claims

}
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Networking: Layers
● Networking: Each vendor had its own proprietary solution -  not compatible with another solution

● IPX/SPX – 1983, AppleTalk 1985, DECnet 1975, XNS 1977

● Nowadays most vendors build compatible networks hardware/software from different vendors
● Cisco, Dell, HP, Huawei, Juniper, Lenovo, Linksys, Netgear, MicroTik, Siemens, Ubiquiti, etc.

● Goal of layers: interoperability
● 1984: ISO 7498 - The Basic Reference Model for Open Systems Interconnection

OSI model
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DataTCP Header

DataTCP HeaderIP Header

DataTCP HeaderIP HeaderEthernet Header

https://en.wikipedia.org/wiki/IPX/SPX
https://en.wikipedia.org/wiki/AppleTalk
https://en.wikipedia.org/wiki/DECnet
https://en.wikipedia.org/wiki/Xerox_Network_Systems
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TCP/IP from an Application Developer View
● Server in golang (repo)

● git clone https://github.com/tboce
k/DSy

● Download GoLand, or others

● go run server.go → server

● Listening on TCP port 8081
● Return string in uppercase

● Node.js version
● Download WebStorm, or other

● Client: 
● nc localhost 8081

package main
import ("bufio"
    "fmt"
    "net"
    "strings")
func main() {
    fmt.Println("Launching server...")
    ln, _ := net.Listen("tcp", ":8081") // listen 
on all interfaces
    for {    
        conn, _ := ln.Accept() // accept connection 
on port
        message, _ := 
bufio.NewReader(conn).ReadString('\n') //read line
        fmt.Print("Message Received:", 
string(message))
        newMessage := strings.ToUpper(message) 
//change to upper
        conn.Write([]byte(newMessage + "\n")) 
//send upper string back
    }
}

const net = require('net');
const server = new net.Server();
server.listen(8081, function() {
    console.log('Launching server...');
});

server.on('connection', function(socket) {
    socket.on('data', function(chunk) {
        console.log(`Data received from client: $
{chunk.toString()}`);
        
socket.write(chunk.toString().toUpperCase() + 
"\n");
    });
});

https://github.com/tbocek/FS21
https://github.com/tbocek/DSy
https://github.com/tbocek/DSy
https://www.jetbrains.com/go/
https://golang.org/doc/editors.html
https://www.jetbrains.com/webstorm/
https://www.credencys.com/blog/ides-for-nodejs-app-development/
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Layer 4 – TCP + TLS
• Ping to Australia: 329ms

• One way ~ 165ms

• TCP + TLS handshake:

• 3RTT = 987ms! No data sent yet

• TLS 1.3, finished Aug 2018
- 1 RTT instead of 2

- 1.) Client Hello, Key Share

- 2.) Server Hello, key Share, Verify Certificate, 
Finished

- 0 RTT possible, for previous connections, loosing 
perfect forward secrecy

• 90% of browsers used already support it

SYN/ACK
SYN/ACK

ACK

1.) 2.)
App Data

App Data

https://medium.com/@vanrijn/what-is-new-with-tls-1-3-e991df2caaac
https://caniuse.com/#search=tls%201.3


QUIC / HTTP/3
• QUIC: 1RTT connection + security handshake

• For known connections: 0RTT

• Built in security

• “Google's 'QUIC' TCP alternative 
slow to excite anyone outside 
Google” [link] (9%, 25%, 75%)

- Facebook

- Cloudflare, state of HTTP

• Example Australia: from 987ms to 329ms

Server Hello

Client Hello

Finished

App Data
App Data

Param
Param

https://blog.apnic.net/2019/03/04/a-quick-look-at-quic/
https://www.theregister.com/2018/01/17/quic_takeup_is_slow/
https://w3techs.com/technologies/details/ce-quic
https://w3techs.com/technologies/details/ce-http3
https://caniuse.com/?search=http3
https://engineering.fb.com/2022/07/06/networking-traffic/watch-metas-engineers-discuss-quic-and-tcp-innovations-for-our-network/
https://blog.cloudflare.com/landscape-of-api-traffic/
https://blog.cloudflare.com/the-state-of-http-in-2022/
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QUIC / HTTP3
• Multiplexing in HTTP/2

• HTTP/1 →  HTTP/2

• HTTP/2: Head-of-line blocking
• One packet loss, TCP needs to be ordered
• QUIC can multiplex requests: one stream does not 

affect others

• HTTP/3 is great, but…
• NAT → SYN, ACK, FIN, conntrack

knows when connection ends, not
with QUIC, timeouts, new entries,
many entries

• HTTP header compression, 
referencing previous headers

• Many TCP optimizations

(#1) GET b.css part 1 (#2) GET a.js part 1 (#3) GET b.css part 2

(s1) GET b.css part 1 (s2) GET a.js part 1 (s1) GET b.css part 2

source: https://blog.cloudflare.com/the-road-to-quic/ 

https://blog.cloudflare.com/the-road-to-quic/
https://en.wikipedia.org/wiki/TCP_Fast_Open
https://blog.cloudflare.com/the-road-to-quic/
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Examples
● Static site generation: dsl.i.ost.ch

● Componets: nginx

● Java daemon who reacts on file changes in a 
director. If markdown file changes → create 
HTML, copy it to nginx directory

● Server side rendering (e.g., handlebarsjs)
● Simple example: ssr.go (no template)

● Components: go-based server

● SPA

● Components: node server, go server

● Hydration
● Best of both worlds, but adds complexity, 

needs JavaScript in the backend

● Overview: source

https://dev.to/ajcwebdev/what-is-partial-hydration-and-why-is-everyone-talking-about-it-3k56#react
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Deployment Strategies
● Many strategies and variations [link, link, link

]
● Rolling Deployment

● New version is gradually deployed to replace 
the old version - without taking the entire 
system down at once

+ Minimal downtime, low risk

- Complexity, longer deployment times

● Blue-Green Deployment
● 2 environments, current prod (blue), current 

prod with new release (green). Test, then 
switch

+ Instant rollback, 0 downtime

- 2 prod environments, keep data in sync

● Canary Releases
● Canary in a coal mine - new version to a small 

group of users or servers first, if all goes well, 
more users

+ Risk reduction, user feedback

- Complexity, inconsistencies

● Feature Toggle
● Fine grained canary, set feature for specific users

+ More risk reduction, specific user feedback

- Increase complexity of codebase, config 
management

● Big Bang
● Deploy everything at once

+ Simple

- High risk, limited rollback

https://www.linkedin.com/pulse/path-production-deep-dive-software-deployment-strategies-kelee/
https://medium.com/@maheshsaini.sec/top-5-most-used-deployment-strategies-5d74f8b13b99
https://thenewstack.io/deployment-strategies/
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