
16.09.2024

Blockchain (BlCh)
Repetition DSy – part 1

Thomas Bocek

Blockchain2

Lecture 1 + 2

Blockchain3

Distributed Systems Motivation
● Why Distributed Systems

● Scaling

● Location

● Fault-tolerance (bitflips, outages)

ht
tp

s:
//w

w
w

.in
ka

nd
sw

itc
h.

co
m

/lo
ca

l-f
irs

t.h
tm

l

Submarine Cable Map

ho
riz

on
ta

l

ve
rt

ic
a

l

https://en.wikipedia.org/wiki/Moore%27s_law
https://blogs.oracle.com/linux/attack-of-the-cosmic-rays-v2
https://subtelforum.com/category/cable-faults-maintenance/
https://www.inkandswitch.com/local-first.html
https://www.submarinecablemap.com/

Blockchain4

Lecture 3

Distributed Systems5

Load Balancing
● What is load balancing

● Distribution of workloads across multiple computing
resources
— Workloads (requests)
— Computing resources (machines)

● Distributes client requests or network load efficiently
across multiple servers [link]
— E.g., service get popular, high load on service

→ horizontal scaling

● Why load balancing
● Ensures high availability and reliability by sending

requests only to servers that are online
● Provides the flexibility to add or subtract servers as

demand dictates

Users

LB

S1

S2

S3

S4

Users

Service
Instance 1REST

Users

Load balancer

Service
Instance 1

Service
Instance 2

REST

https://www.nginx.com/resources/glossary/load-balancing

Distributed Systems6

CORS
● CORS = Cross-Origin Resource Sharing

● For security reasons, browsers restrict cross-origin
HTTP requests initiated from scripts (among others)

● Mechanism to instruct browsers that runs a resource
from origin A to run resources from origin B

● Solution

● Use reverse proxy with builtin webserver, e.g., nginx, or
user reverse proxy with external webserver.

→ The client only sees the same origin for the API and
the frontend assets

● Access-Control-Allow-Origin: https://foo.example

→ For dev: Access-Control-Allow-Origin: *

● w.Header().Set("Access-Control-Allow-Origin",
"*")

● Reverse proxy

Users

LB

Backend service 1

Backend service 2

Frontend

Users

LB
 / R

P

Backend service 1

Backend service 2

Frontend

CORS

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://foo.example/

Blockchain7

Lecture 4

Introduction

Physical machine

Hypervisor

G
ue

st
 O

S
A

pp
 1

A
pp

 2

A
pp

 3

Physical machine

G
ue

st
 O

S

G
ue

st
 O

S

Host OS

Docker

A
pp

 1

A
pp

 2

A
pp

 3

Host OS

Physical machine

Hypervisor

Guest OS

A
pp

 1

A
pp

 3
G

ue
st

 O
S

Host OS

Docker

A
pp

 2

• Virtual machines • Container • Both

Blockchain9

Lecture 5

Blockchain10

Distributed Systems Categorization
“Controlled” Distributed Systems

● 1 responsible organization

● Low churn

● Examples:
● Amazon DynamoDB

● Client/server

● “Secure environment”

● High availability

● Can be homogeneous / heterogeneous

“Fully” Decentralized Systems

● N responsible organizations

● High churn

● Examples:
● BitTorrent

● Blockchain

● “Hostile environment”

● Unpredictable availability

● Is heterogeneous

Blockchain11

Distributed Systems Categorization
“Controlled” Distributed Systems

● Mechanisms that work well:
● Consistent hashing (DynamoDB, Cassandra)

● Master nodes, central coordinator

● Network is under control or client/server →
no NAT issues

“Fully” Decentralized Systems

● Mechanisms that work well:
● Consistent hashing (DHTs)

● Flooding/broadcasting - Bitcoin

● NAT and direct connectivity huge problem

Blockchain12

Distributed Systems Categorization
“Controlled” Distributed Systems

● Consistency
● Leader election (Zookeeper, Paxos, Raft)

● Replication principles
● More replicas: higher availability, higher

reliability, higher performance, better
scalability, but: requires maintaining
consistency in replicas

● Transparency principles apply

“Fully” Decentralized Systems

● Consistency
● Weak consistency: DHTs
● Nakamoto consensus (aka proof of work)
● Proof of stake – Leader election, PBFT

protocols - Is Bitcoin eventually consistent?
— Some argue no, some argue it has even stronger

guarantees [link]

● Replication principles apply to fully
decentralized systems as well

● Transparency principles apply

https://hackingdistributed.com/2016/03/01/bitcoin-guarantees-strong-not-eventual-consistency/

Blockchain13

Distributed Systems Categorization
● Spring Term – Distributed Systems (DSy)

● Tightly/loosely coupled

● Heterogeneous systems

● Small-scale systems

● Distributed systems

(we will also talk about blockchains in this
lecture)

● Fall Term – Blockchain (BlCh)

● Loosely coupled

● Heterogeneous systems

● Large-scale systems

● Decentralized systems

(we will also talk about distributed systems in
this lecture, but DSy is highly recommended)

Blockchain14

Lecture 6

Distributed Systems15

Pro/Cons - Opinion
● Monorepo

● Tight coupling of projects
— E.g., generating openapi.yml from backend,

generate types for frontend → simply copy
● Everyone sees all code / commits
● Encourages code sharing within organization
● Scaling: large repos, specialized tooling

● Polyrepo
● Loose coupling of projects

— If you want to generate openapi.yml, you need
access from the backend repository to the frontend
(e.g., curl+token)

● Fine grained access control
● Encourages code sharing across organizations
● Scaling: many projects, special coordination

● Opinion: Accenture - “From my experience, for a smaller team, starting with mono-repo is
always safe and easy to start. Large and distributed teams would benefit more from poly-repo”

● My opinion: for small teams and “independent” project, use polyrepo. (I worked with small
teams with mono and polyrepo, I have worked in big projects with polyrepos, but never in a big
project with monorepos). If you have a tight coupling between projects (OpenAPI), use
monorepos.

● Other opinion (sales pitch): https://monorepo.tools

K
ey

 D
iff

er
en

ce
s

https://www.accenture.com/us-en/blogs/software-engineering-blog/how-to-choose-between-mono-repo-and-poly-repo
https://monorepo.tools/
https://github.com/joelparkerhenderson/monorepo-vs-polyrepo#key-differences

Blockchain16

Lecture 7

17

Access Token / Refresh Token
● Access Token only short lifetime, e.g.,

10min.
● If public key / secret is known, the content in

the token can be trusted, e.g., in the serivce

● Can have userId, role, etc.
— No need to query DB for those information, e.g.:

● Refresh Token longer lifetime, e.g., 6 month
● A refresh token is used to get a new access

token

● IAM / Auth server creates access tokens

● Only access token, with long lifetime
● If a user credential is revoked – how to inform

every service?

● Only refresh token
● Tightly coupled Service/Auth, every request to

Service, Auth needs to be involved for every
access

● Access + Refresh token
● If a user credential is revoked, user has max.

10min more to access service

● Auth only involved if access token is expired

type TokenClaims struct {
MailFrom string `json:"mail_from,omitempty"`
MailTo string `json:"mail_to,omitempty"`
jwt.Claims

}

Blockchain18

Lecture 8

Blockchain19

Networking: Layers
● Networking: Each vendor had its own proprietary solution - not compatible with another solution

● IPX/SPX – 1983, AppleTalk 1985, DECnet 1975, XNS 1977

● Nowadays most vendors build compatible networks hardware/software from different vendors
● Cisco, Dell, HP, Huawei, Juniper, Lenovo, Linksys, Netgear, MicroTik, Siemens, Ubiquiti, etc.

● Goal of layers: interoperability
● 1984: ISO 7498 - The Basic Reference Model for Open Systems Interconnection

OSI model

Application

Presentation

Session

Transport

Network

Data link

Pysical

"Internet model"

Application

Transport

Internet

Link

Data

DataTCP Header

DataTCP HeaderIP Header

DataTCP HeaderIP HeaderEthernet Header

https://en.wikipedia.org/wiki/IPX/SPX
https://en.wikipedia.org/wiki/AppleTalk
https://en.wikipedia.org/wiki/DECnet
https://en.wikipedia.org/wiki/Xerox_Network_Systems

Blockchain20

TCP/IP from an Application Developer View
● Server in golang (repo)

● git clone https://github.com/tboce
k/DSy

● Download GoLand, or others

● go run server.go → server

● Listening on TCP port 8081
● Return string in uppercase

● Node.js version
● Download WebStorm, or other

● Client:
● nc localhost 8081

package main
import ("bufio"
 "fmt"
 "net"
 "strings")
func main() {
 fmt.Println("Launching server...")
 ln, _ := net.Listen("tcp", ":8081") // listen
on all interfaces
 for {
 conn, _ := ln.Accept() // accept connection
on port
 message, _ :=
bufio.NewReader(conn).ReadString('\n') //read line
 fmt.Print("Message Received:",
string(message))
 newMessage := strings.ToUpper(message)
//change to upper
 conn.Write([]byte(newMessage + "\n"))
//send upper string back
 }
}

const net = require('net');
const server = new net.Server();
server.listen(8081, function() {
 console.log('Launching server...');
});

server.on('connection', function(socket) {
 socket.on('data', function(chunk) {
 console.log(`Data received from client: $
{chunk.toString()}`);

socket.write(chunk.toString().toUpperCase() +
"\n");
 });
});

https://github.com/tbocek/FS21
https://github.com/tbocek/DSy
https://github.com/tbocek/DSy
https://www.jetbrains.com/go/
https://golang.org/doc/editors.html
https://www.jetbrains.com/webstorm/
https://www.credencys.com/blog/ides-for-nodejs-app-development/

Blockchain21

Layer 4 – TCP + TLS
• Ping to Australia: 329ms

• One way ~ 165ms

• TCP + TLS handshake:

• 3RTT = 987ms! No data sent yet

• TLS 1.3, finished Aug 2018
- 1 RTT instead of 2

- 1.) Client Hello, Key Share

- 2.) Server Hello, key Share, Verify Certificate,
Finished

- 0 RTT possible, for previous connections, loosing
perfect forward secrecy

• 90% of browsers used already support it

SYN/ACK
SYN/ACK

ACK

1.) 2.)
App Data

App Data

https://medium.com/@vanrijn/what-is-new-with-tls-1-3-e991df2caaac
https://caniuse.com/#search=tls%201.3

QUIC / HTTP/3
• QUIC: 1RTT connection + security handshake

• For known connections: 0RTT

• Built in security

• “Google's 'QUIC' TCP alternative
slow to excite anyone outside
Google” [link] (9%, 25%, 75%)

- Facebook

- Cloudflare, state of HTTP

• Example Australia: from 987ms to 329ms

Server Hello

Client Hello

Finished

App Data
App Data

Param
Param

https://blog.apnic.net/2019/03/04/a-quick-look-at-quic/
https://www.theregister.com/2018/01/17/quic_takeup_is_slow/
https://w3techs.com/technologies/details/ce-quic
https://w3techs.com/technologies/details/ce-http3
https://caniuse.com/?search=http3
https://engineering.fb.com/2022/07/06/networking-traffic/watch-metas-engineers-discuss-quic-and-tcp-innovations-for-our-network/
https://blog.cloudflare.com/landscape-of-api-traffic/
https://blog.cloudflare.com/the-state-of-http-in-2022/

23

QUIC / HTTP3
• Multiplexing in HTTP/2

• HTTP/1 → HTTP/2

• HTTP/2: Head-of-line blocking
• One packet loss, TCP needs to be ordered
• QUIC can multiplex requests: one stream does not

affect others

• HTTP/3 is great, but…
• NAT → SYN, ACK, FIN, conntrack

knows when connection ends, not
with QUIC, timeouts, new entries,
many entries

• HTTP header compression,
referencing previous headers

• Many TCP optimizations

(#1) GET b.css part 1 (#2) GET a.js part 1 (#3) GET b.css part 2

(s1) GET b.css part 1 (s2) GET a.js part 1 (s1) GET b.css part 2

source: https://blog.cloudflare.com/the-road-to-quic/

https://blog.cloudflare.com/the-road-to-quic/
https://en.wikipedia.org/wiki/TCP_Fast_Open
https://blog.cloudflare.com/the-road-to-quic/

Blockchain24

Lecture 9

Distributed Systems25

Examples
● Static site generation: dsl.i.ost.ch

● Componets: nginx

● Java daemon who reacts on file changes in a
director. If markdown file changes → create
HTML, copy it to nginx directory

● Server side rendering (e.g., handlebarsjs)
● Simple example: ssr.go (no template)

● Components: go-based server

● SPA

● Components: node server, go server

● Hydration
● Best of both worlds, but adds complexity,

needs JavaScript in the backend

● Overview: source

https://dev.to/ajcwebdev/what-is-partial-hydration-and-why-is-everyone-talking-about-it-3k56#react

Blockchain26

Lecture 10

Distributed Systems27

Deployment Strategies
● Many strategies and variations [link, link, link

]
● Rolling Deployment

● New version is gradually deployed to replace
the old version - without taking the entire
system down at once

+ Minimal downtime, low risk

- Complexity, longer deployment times

● Blue-Green Deployment
● 2 environments, current prod (blue), current

prod with new release (green). Test, then
switch

+ Instant rollback, 0 downtime

- 2 prod environments, keep data in sync

● Canary Releases
● Canary in a coal mine - new version to a small

group of users or servers first, if all goes well,
more users

+ Risk reduction, user feedback

- Complexity, inconsistencies

● Feature Toggle
● Fine grained canary, set feature for specific users

+ More risk reduction, specific user feedback

- Increase complexity of codebase, config
management

● Big Bang
● Deploy everything at once

+ Simple

- High risk, limited rollback

https://www.linkedin.com/pulse/path-production-deep-dive-software-deployment-strategies-kelee/
https://medium.com/@maheshsaini.sec/top-5-most-used-deployment-strategies-5d74f8b13b99
https://thenewstack.io/deployment-strategies/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Load balancing
	CORS
	Slide 7
	Introduction
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Access Token / Refresh Token (2)
	Slide 18
	Networking: Layers
	TCP/IP from an Application Developer View
	Layer 4 – TCP + TLS (2)
	QUIC
	QUIC (2)
	Slide 24
	Slide 25
	Slide 26
	Slide 27

