OST Eastern Switzerland University of Applied Sciences

Blockchain (BICh)

Monero: The Private Digital Currency

Thomas Bocek 19.11.2023

Monero's Market Performance

Introduction to Monero (XMR)

- Definition and Basic Concept
 - Monero (XMR): decentralized cryptocurrency emphasizes privacy, security, and untraceability
 - Monero transactions are confidential and untraceable, thanks to advanced cryptography
- Privacy Focus
 - Privacy by Default: designed to obscure senders, recipients, amount of transaction
 - Utilizes technologies Ring Signatures and Stealth Addresses, protect user identities and transaction details

• Explainer on https://www.getmonero.org/, https://www.getmonero.org/get-started/whatis-monero/

Introduction to Monero (XMR)

- Open Source and Decentralization
 - Monero is open source: code is publicly accessible – transparency, community-driven improvements.
 - Decentralized: no central authority controls Monero, maintained by a community of developers and users.
- Creation and Evolution
 - Monero was launched in April 2014 as a fork of Bytecoin (CryptoNote) -
 - Undergone several updates to enhance its privacy features and network efficiency
 - Bytecoin? Satoshi? Wild speculations

-o- Commits on Sep 25, 2018 Merge pull request #4437 ... R fluffypony committed on Sep 25, 2018 wallet2: fix duplicate output making it to the RPC moneromooo-monero committed on Sep 25, 2018 epee: fix invalid memory write reading an array entry ... moneromooo-monero committed on Sep 25, 2018 epee: fix stack overflow on crafted input moneromooo-monero committed on Sep 25, 2018 Commits on Aug 23, 2018 -0-Merge pull request #4227 ... 🗞 luigi1111 committed on Aug 23, 2018 Merge pull request #4107 ... 🗞 luigi1111 committed on Aug 23, 2018 Commits on Aug 5, 2018 -0abstract_tcp_server2: fix race on shutdown moneromooo-monero committed on Aug 5, 2018 Commits on Jul 10, 2018 -0-

Introduction to Monero (XMR)

- Key Characteristics
 - Untraceability: ring signatures mix a user's account keys with public keys from the blockchain ~impossible to identify sender
 - Fungibility: Monero coin is interchangeable and indistinguishable from another
 - Adaptive Block Size Limit: Unlike Bitcoin, Monero no predefined block size limit
- Challenges and Criticisms
 - Strong privacy features led to controversial discussions regarding illegal activities
 - · Regulatory challenges due to its anonymity

Source: https://en.wikipedia.org/wiki/File:Revil-ransom-demand.png

History and origin of Monero

- Pre-Monero background
 - Traced back to CryptoNote protocol, designed to address several perceived shortcomings in Bitcoin's protocol, particularly around privacy and scalability (chapter 2)
 - CryptoNote introduced innovations like ring signatures and stealth addresses, foundation of Monero
- Fork from Bytecoin
 - Monero was launched in April 2014, fork of Bytecoin, based on the CryptoNote protocol
 - Why fork? Concerns over Bytecoin's pre-mined coins (>80%), raising questions about fairness and decentralization

- Early development and community involvement
 - Fork by user known as "thankful_for_today" on Bitcointalk forum. However, after disagreements with community regarding the direction, control handed over to community members
 - This group, known as the Monero Core Team, included notable figures like Riccardo Spagni (Fluffypony), Francisco Cabañas (ArticMine), and others
- Name and Symbol
 - The name "Monero" comes from the Esperanto word for "coin" or "currency,"
 - The currency symbol XMR stands for "Monero" and is widely recognized in the cryptocurrency community

History and origin of Monero

- Development Focus
 - Privacy and security
 - Open-source and crowdfunded, relies on donations and community support
- Key Updates and Forks
 - Several scheduled and unscheduled hard forks to improve its privacy, security, and scalability
 - Ring Confidential Transactions (RingCT)
 - Bulletproofs to enhance privacy and efficiency
 - Regular hard forks, ~6 months adapt to emerging technologies

Monero vs. Other Cryptocurrencies

- Foundational Technology
 - Bitcoin: first cryptocurrency, creating decentralized digital currency
 - Ethereum: platform for decentralized applications (dApps) using smart contracts
 - Monero: privacy and security, advanced cryptography to remain confidential and untraceable.
- Mining Algorithm
 - Bitcoin: Uses Proof-of-Work (PoW) with SHA-256 algorithm, high-power mining rigs, leading to centralization concerns
 - Ethereum: Originally PoW, resistance to ASIC mining, now transitioned to Proof-of-Stake, PoS)
 - Monero: Uses RandomX, a PoW algorithm optimized for CPUs, resistance to ASIC mining

Monero vs. Other Cryptocurrencies

- Scalability and Transaction Speed
 - Bitcoin: limited block size leads to slower transaction times and higher fees during peak usage
 - Ethereum: also scalability challenges, upcoming updates aim to address these with sharding
 - Monero: dynamic block size adjusts based on network demand, privacy enhancements can lead to larger transaction
- Fungibility
 - Bitcoin and Ethereum: Lack of fungibility; history of coins traceable, leading to 'tainted' coins
 - Monero: highly fungible, transaction history is untraceable

- Use Cases
 - Bitcoin: Widely used as a digital currency and a store of value ('digital gold')
 - Ethereum: powers many decentralized applications, from DeFi to NFTs, through its smart contract functionality
 - Monero: primarily used for transactions requiring high privacy, popular in regions or use-cases where financial privacy is paramount

The Technology Behind Monero

- Ring Signatures (built-in mixer)
 - Allow a sender to conceal identity by mixing their transaction's digital signature with other users' signatures
 - Outside observers cannot determine which user actually initiated transaction
- Bulletproofs
 - Non-interactive zero-knowledge proof, to prove a number (transaction amount) without revealing it
 - Significantly reduce transaction size (and fees) and improve verification speed

- Stealth Addresses
 - Protect receiver privacy
 - One-time addresses, generated randomly for each transaction on behalf of the recipient
 - Ensures destination of transaction remains hidden
 - Combination of the sender's, the recipient's public keys, and random data
 - Made in a way that only with recipient private key, these transactions can be found
- Kovri (I2P) Integration
 - Similar to TOR, but focus on creating an anonymous internal network

