
05.11.2023

Blockchain (BlCh)
Fully Distributed Systems: Introduction and Algorithms

Thomas Bocek

Blockchain2

Recall Transparency Principles (DSy, FS2x)
● Distributed system should hide its distributed

nature
● Location transparency – users should not be

aware of the physical location

● Access transparency - users should access
resources in a single, uniform way

● Replication transparency – users should not be
aware about replicas, it should appear as a
single resource

● Concurrent transparency – users should not be
aware of other users

● ...

● More/other transparencies here, here, here

https://www.ijeat.org/wp-content/uploads/papers/v7i4/D5327047418.pdf
https://en.wikipedia.org/wiki/Transparency_%28human%E2%80%93computer_interaction%29
https://de.wikipedia.org/wiki/Transparenz_(Computersystem)

Blockchain3

Distributed Management and Retrieval of Data
● Essential challenge in (most) distributed / P2P systems?

● Location of a data item among systems distributed
— Where shall the item be stored?

— How can the item be found?

● Scalability: keep the complexity for communication and storage scalable

● Robustness and resilience in case of faults and frequent changes

Blockchain4

Comparison of Strategies for Data Retrieval
● Strategies to store and retrieve data items in distributed systems

● Central server (e.g., service registry, reverse proxy - although main use case is load balancing)

● Flooding search (e.g., layer 2 broadcasting, wireless mesh networks, Bitcoin)

● Distributed indexing (Tor, Bittorrent, IPFS, Apache Cassandra, Dynamo

https://github.com/Netflix/eureka
https://en.wikipedia.org/wiki/Reverse_proxy
https://en.wikipedia.org/wiki/Broadcasting_(networking)
https://en.wikipedia.org/wiki/Wireless_ad_hoc_network
https://en.bitcoin.it/wiki/Transaction_broadcasting
https://www.torproject.org/
https://www.bittorrent.org/
https://ipfs.io/
https://cassandra.apache.org/_/index.html
https://en.wikipedia.org/wiki/Dynamo_(storage_system)

Blockchain5

Central Server
● Simple strategy: Central Server (can be powerful – vertical scaling!)

● Server stores information about locations

1) Node A (provider) tells server that it stores item D

2) Node B (requester) asks server S for the location of D

3) Server S tells B that node A stores item D

4) Node B requests item D from node A 2) “Where is D ?”

3) “A stores
D”

4) Transmission: D → Node B
1) “A stores D”

“A stores D”

Node A

Node B

Server S

Blockchain6

Approach I: Central Server
● Advantages

● Search complexity of O(1) – “just ask the server”

● Complex and fuzzy queries are possible

● Simple and fast

● Problems

● No Scalability
— O(N) node state in server

— O(N) network and system load of server

● Single point of failure or attack

● (Single) central server not suitable for systems with
massive numbers of users

● But overall, …

● Best principle for small and simple applications!

● AMD EPYC: 48 core, 384GB RAM, 4xNVM
SSD
● ~70k TPS

https://www.enterprisedb.com/blog/pgbench-performance-benchmark-postgresql-12-and-edb-advanced-server-12

https://www.enterprisedb.com/blog/pgbench-performance-benchmark-postgresql-12-and-edb-advanced-server-12

Blockchain7

Approach II: Flooding
● Fully-distributed Approach

● Opposite approach of approach I

● No information on location of a content

● Retrieval of data

● No routing information for content

● Necessity to ask as much systems as possible / necessary

● Approaches
— Highest degree search: quick search through large areas

— Random walk

● Flooding: high traffic load on network, scalability issues (mechanism required to stop spamming, e.g.
TX fee)

● No guarantee to reach all nodes

Blockchain8

Approach II: Flooding Search
● Fully Decentralized Approach: Flooding

Search
● No information about location of data in the

intermediate systems
● Flood with search term, or flood all the data

(Bitcoin)
— Flood all the data: search local

● 1) Node B (requester) asks neighboring nodes for item D

● 2-4) Nodes forward request to further nodes (breadth-first
search / flooding)

● 5) Node A (provider of item D) sends D to requesting
node B

Node A

Node B

& Transmission: D → Node B

“I have D”

“I store D”

“B searches D”

1)

1)

1)

4)

4)

2)

2)

2)

2)

2)

3)

3)

3)

Blockchain9

Motivation Distributed Indexing (1)

C
o

m
m

u
n

ic
a

ti
o

n
O

v
e

rh
ea

d

Node State

O(N)

O(N)O(1)

O(1)

O(log N)

O(log N)

Flooding

Bottleneck:
● Communication

Overhead
● False negatives

Central
Server

Bottlenecks:
● Memory, CPU, Network
● Availability

?
Scalable solution
between both
extremes?

Blockchain10

Motivation Distributed Indexing (1)

C
o

m
m

u
n

ic
a

ti
o

n
O

v
e

rh
ea

d

Node State

O(N)

O(N)O(1)

O(1)

O(log N)

O(log N)

Flooding

Bottleneck:
● Communication

Overhead
● False negatives

Central
Server

Bottlenecks:
● Memory, CPU, Network
● Availability

● Scalability: O(log N)
● No false negatives
● Resistant against changes

● Failures
● Short time users

Distributed
Hash Table

http://en.wikipedia.org/wiki/Logarithmic_growth#mediaviewer/File:Log.svg

Blockchain11

Distributed Indexing (1)
● Goal is scalable complexity for

● Communication effort: O(log(N)) hops

● Node state: O(log(N)) routing entries
Routing in O(log(N))
steps to the node
storing the data

Nodes store O(log(N))
routing information to

other nodes

Blockchain12

Distributed Indexing (2)
● Approach of distributed indexing

schemes
● Data and nodes are mapped into same

address space

● Nodes maintain routing information to
other nodes
— Definitive statement of existence of content

● Problems
● Maintenance of routing information

required

● Fuzzy queries not primarily supported
(e.g., wildcard searches)

Blockchain13

Comparison of Lookup Concepts

System Per Node State
Communication

Overhead
Fuzzy Queries

No false
negatives

Robustness /
horizontal
scalable

Central Server O(N) O(1) ✅ ✅ ()❌

Flooding O(1) O(N) ✅ ()❌ ✅

Distributed
Hash Tables

O(log N) O(log N) ()❌ ✅ ✅

● Big O notation: classify computer algorithms

https://en.wikipedia.org/wiki/Big_O_notation#Infinite_asymptotics

Blockchain14

Fundamentals of Distributed Hash Tables
● Challenges for designing DHTs

● Desired Characteristics
— Reliability / Scalability

● Equal distribution of content among nodes
— Crucial for efficient lookup of content

● Permanent adaptation to faults, joins, exits of
nodes
— Assignment of responsibilities to new nodes

— Re-assignment and re-distribution of
responsibilities in case of node failure or
departure

● Distributed Hash Table
● Consistent hashing → nodes responsible for

hash value intervals

● More peers = smaller responsible intervals

● Hash Table [link]
● Modulo hashing

— Bucket = hash(x) mod n

● If n changes, remapping / bucket changes

● N changes if capacity is reached

● Remapping is expensive in DHT!
— DHTs reassign responsibility

https://www.youtube.com/watch?v=KyUTuwz_b7Q
https://de.wikipedia.org/wiki/Hashtabelle#/media/Datei:Hash_table_5_0_1_1_1_1_1_LL.svg

Blockchain15

Distributed Management of Data
1. Mapping of nodes and data into same
address space

● Peers and content are addressed using flat
identifiers (IDs)
● E.g., Address is public key (256bit) or SHA256

of public key. Content ID = SHA256(content)

● Common address space for data and nodes

● Nodes are responsible for data in certain
parts of the address space

● Association of data to nodes may change
since nodes may disappear

2. Storing / Looking up data in the DHT

● Store data = first, search for responsible
node
● Not necessarily known in advance

● Search data = first, search for responsible
node

Blockchain16

Association of Address Space with Nodes
● Each node is responsible for part of the value range

● Often with redundancy (overlapping of parts)

● Continuous adaptation

● Real (underlay) and logical (overlay) topology are uncorrelated

Logical view of the
Distributed Hash Table

Mapping on the
real topology

Node 3485 is responsible for data
items in range 2907 to 3485

(in case of a Chord-DHT)

Blockchain17

Routing to a Data Item
● Locating the data / Routing to a K/V-pair

● Start lookup at arbitrary node of DHT

● Routing to requested data item (key)

Initial node
(arbitrary)

Node 3485 manages
keys 2907-3485,

(3107, (ip, port))

Value = pointer to location of data

Key = H(“my data”)

Blockchain18

Routing to a Data Item
● Getting the content

● K/V-pair is delivered to requester

● Requester analyzes K/V-tuple (and downloads data from actual location – in case of indirect storage)

Node 3485 sends
(3107, (ip/port)) to requester

Blockchain19

Association of Data with IDs – Direct Storage
● How is content stored on the nodes?

● Example:
H(“my data”) = 3107 is mapped into DHT
address space

● Direct storage
● Content is stored in responsible node for

H(“my data”)

● →Inflexible for large content – o.k., if small
amount data (~KB) or used internally

Get
H(«my data»)

Blockchain20

Association of Data with IDs – Indirect (tracker) Storage
● Indirect storage

● Nodes in a DHT store tuples like (key,value)
— Key = Hash(„my data”) → 2313

— Value is often real storage address of content:
(IP, Port) = (134.2.11.140, 4711)

● More flexible for large data, but one step more to
reach content

(IP, Port) = (134.2.11.140, 4711)

Get
H(«my data»)

Blockchain21

Join/Leave
● Joining of a new node

1) Calculation of node ID (normally random / or based on
PK)

2) New node contacts DHT via arbitrary node (bootstrap
node)

3) Lookup of its node ID (routing)

4) Copying of K/V-pairs of hash range (in case of
replication)

5) Notify neighbors

● Failure of a node

● Use of redundant K/V pairs (if a node fails)

● Use of redundant / alternative routing paths

● Key-value usually still retrievable if at least one copy
remains

● Departure of a node
● Copying of K/V pairs to corresponding nodes

— Can be before or after unbinding

● Friendly unbinding from routing environment
— If unbinding is unfriendly, need for keep-alive

messages

I’m 3400, where
are my neigbors?

Blockchain22

Kademlia
● Several approaches to build DHT

● Distance metric as key difference
— Chord, Pastry: numerical closeness

— CAN: multidimensional numerical closeness

— Kademlia: XOR metric

● Kademlia designed in 2002 by Maymounkov and
Mazières

● Many implementations, application specific
— BitTorrent (tracker), IPFS, Tor Onion Services

● Parallel queries

● For one query, α (alpha) concurrent lookups are
sent

● More traffic load, but lower response times

● Preference towards old contacts
● Study has shown that the longer a node has been

up, the more likely it is to remain up another hour

● Resistance against DoS attacks by flooding the
network with new nodes

● Network maintenance
● In Chord: active fixing of fingers

● In Kademlia: active maintenance

● DHT-based overlay network using the XOR
distance metric
● Symmetrical routing paths

(A → B == B → A)
— due to XOR(A,B) == XOR (B,A)

https://en.wikipedia.org/wiki/Kademlia

Blockchain23

Construction of Routing Table
● Each Kademlia node and data item has unique

identifier

● 160 bit (SHA-1)

● Nodes: Node ID (160bit)
— Can be calculated from IP address or public key, and

data item using secure hash function, or just random

● Data items: Keys (160bit), hash of data item

● Keys are located on the node whose node ID is
closest to the key

● Knows neighbors well, further nodes not that much

● Kademlia: 160 buckets with size 20 (8)

● If distance can be represented in m bits, bucket m
will be used

XOR Distance Calculation:

ID Node A: 110101
ID Node B: 010001

dXOR(A,B) = d(110101,010001)

1 1 0 1 0 1
 XOR
0 1 0 0 0 1
 ↓
1 0 0 1 0 0

dXOR(A,B) = 1 0 0 1 0 02 = 3610

http://pdos.csail.mit.edu/~petar/papers/maymounkov-kademlia-lncs.pdf
http://pdos.csail.mit.edu/~petar/papers/maymounkov-kademlia-lncs.pdf
https://shattered.io/
http://people.kth.se/~rauljc/p2p11/jimenez2011subsecond.pdf

Blockchain24

Kademlia Example
● 23, max size 8, #6 searches for 3

● Neighbors of 6, if k=1

● Search for 3, ask 0, neighbors of 0

● Ask 2, neighbors of 2

● Ask 2, 2 replies 0. 6 figures that there is no
closer node, 2 is the closest one (2 xor 3 =1)

1 2 3

7 4 (or 5) 0 (or 1, 2)

Routing Table of #6
6 xor 3 = 101b

1 2 3

1 2 4 (or 5, 6, 7)

Routing Table of #0
0 xor 3 = 11b

1 2 3

- 0 (or 1) 4 (or 5, 6, 7)

Routing Table of #2
2 xor 3 = 1b

Routing with XOR,
with 3-bits

Key 011 Node ID
110

Blockchain25

TomP2P
● TomP2P is a P2P framework/library

● Unmaintained ☹

● Implements DHT (structured), broadcasts
([un]structured), direct messages (can
implement super-peers)

● NAT handling: UPNP, NATPMP, relays, hole
punching (work in progress)

● Direct / indirect (tracker / mesh) storage

● Direct / indirect replication (churn prediction
and ~rsync)

● Yes, this is the first Android device, HTC Dream,
Sept. 2009

Blockchain26

Fully Decentralized Systems
● Always consider Sybil attacks

● TomP2P, BitTorrent, etc.
— Data can always disappear

● Know when data changed

● Sybil attack
● Create large number of identities

● Larger than honest nodes
— Control “close” nodes in a DHT

— Isolate nodes

● Prevention [source]
● Creation of identities costs money

● Always assume data from other nodes may be
missing
— Bitcoin – chain of block, if block is missing, you

notice

● Chain of trust / reputation

You Sybil nodesHonest nodes

https://en.wikipedia.org/wiki/Sybil_attack
https://coincentral.com/sybil-attack-blockchain/

Blockchain27

Attacking the DHT
● Example

● Create a key for a data item close to the target:
Number160.createHash(data).xor(new Number160(0)) – distance 0, perfect match
Number160.createHash(data).xor(new Number160(1)) – distance 1
Number160.createHash(data).xor(new Number160(2)) – distance 2
…

● Or create key of node close to the target
new PeerBuilder(new Number160(RND)).ports(port).start(), where RND is
Number160.createHash(data).xor(new Number160(0))
Number160.createHash(data).xor(new Number160(1))
…

● Peer can then answer there is no data

● For previously known values / peers (known public key)

● Cannot change data, but make it disappear

https://github.com/tbocek/VSS-FS18/tree/master/VSS-tomp2p

Blockchain28

Redundancy in DHTs
● Replication

● Enough replicas

● Direct replication
— Originator peer is responsible

— Periodically refresh replicas

— Example: tracker that announces its data

● Problem
● Originator offline → replicas disappear.

Content has TTL

Blockchain29

Redundancy in DHTs
● Indirect Replication

● The closest peer is responsible, originator may
go offline vs any close peers are responsible
— Periodically checks if enough replicas exist

— Detects if responsibility changes

● Problem
● Requires cooperation between responsible

peer and originator

● Multiple peers may think they are responsible
for different versions → eventually solved

closest vs any

Blockchain30

Replication and Consistency
● DHTs have weak consistency

● Peer A put X.1

● Peer B gets X.1

● Peer B modifies it puts B.2

● Same time (time in distributed systems):
● Peer C gets X.1

● Peer C modifies it puts C.2

● Replication makes it worse
● Consistency: generic issue in distributed systems,

requires typically coordinator

● Multi-Paxos, Raft, ZooKeeper → Leader
Election

● vDHT: CoW, versions, 2PC, replication,
software transactional memory (STM) → for
consistent updates. Works for light churn
● No locking, no timestamps (replication time may

have an influence)

● Every update – new version
— get latest version, check if all replica peers have

latest version, if not wait and try again

— put prepared with data and short TTL, if status is OK
on all replica peers, go ahead, otherwise, remove the
data and go to step 1.

— put confirmed, don’t send the data, just remove the
prepared flag

● Leader is the originator

● In case of heavy churn, API user needs to
resolve

https://queue.acm.org/detail.cfm?id=2745385
https://github.com/tomp2p/TomP2P/blob/master/examples/src/main/java/net/tomp2p/examples/ExampleVDHT.java

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

