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Architecture
● Server side rendering (SSR) ● Single page application (SPA), client side 

rending (CSR)
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Examples
● Static site rendering: dsl.i.ost.ch

● Componets: nginx

● Java daemon who reacts on file changes in a 
director. If markdown file changes → create 
HTML, copy it to nginx directory

● Server side rendering (e.g., handlebarsjs)
● Simple example: ssr.go (no template)

● Components: go-based server

● SPA

● Components: node server, go server

● Hydration
● Best of both worlds, but adds complexity, 

needs JavaScript in the backend

● E.g., react: hydrate() instead of render() 
method – choices... source

https://dev.to/ajcwebdev/what-is-partial-hydration-and-why-is-everyone-talking-about-it-3k56#react
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Authentication
● Authentication

● Single-factor authentication
— E.g. password

● Multi-factor authentication / 2FA
— E.g. password and software token, SMS (15.03.2021)

● Password rules

● Don’t use:  
— The name of a pet, child, family member, or significant other

— Anniversary dates and birthdays

— Birthplace

— Name of a favorite holiday

— Something related to a favorite sports team

— The word "password“

● Don’t’ reuse passwords, use password managers

● Don’t enter passwords on unencrypted sites

● Password length: 
password cracking with 5000$ in 2018 with 
hashcat
— Hashtype: WPA/WPA2: 1190.5 kH/s

● Combinations depend on PW complexity

Pw length Combinations Time

6 11m 9s

7 656m 9m

8 38b 8h

9 7 *1015 186y

10 4 *1017 11ky

11 2 *1019 665ky

12 1 *1021 38my

https://www.vice.com/en/article/y3g8wb/hacker-got-my-texts-16-dollars-sakari-netnumber
https://techland.time.com/2013/08/08/google-reveals-the-10-worst-password-ideas/?iid=biz-article-mostpop2
https://www.netmux.com/blog/how-to-build-a-password-cracking-rig
https://github.com/hashcat/hashcat
https://math.stackexchange.com/questions/739874/how-many-possible-combinations-in-8-character-password
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Authentication
● JSON-based access tokens

— Header: {"alg" : "HS256"}

— Payload: {“sub" : "tom", "role" : "admin", “exp" : 
1422779638}

● Signature (simple): keyed-hash message
— ~hash(base64(header)+base64(payload) + secret token)

● Client can store user_token in
— localStorage.setItem(“token", userToken);

● Example in golang with JWT
— Tutorial: here and here

● OAuth - protocol for authorization 3rd party 
integration

● Grant access on other websites without giving them 
the passwords

source

https://github.com/square/go-jose/tree/v2
https://jelinden.fi/blog/simple-golang-jwt-authorize/xFThAkKmR
https://www.sohamkamani.com/golang/2019-01-01-jwt-authentication/
https://en.wikipedia.org/wiki/OAuth
https://www.sohamkamani.com/golang/2019-01-01-jwt-authentication/
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Access Token / Refresh Token
● Access Token only short lifetime, e.g., 

10min.
● If public key / secret is known, the content in 

the token can be trusted, e.g., in the serivce

● Can have userId, role, etc. 
— No need to query DB for those information, e.g.: 

● Refresh Token longer lifetime, e.g., 6 month
● A refresh token is used to get a new access 

token 

● IAM / Auth server creates access tokens

● Only access token, with long lifetime
● If a user credential is revoked – how to inform 

every service?

● Only refresh token
● Tightly coupled Service/Auth, every request to 

Service, Auth needs to be involved for every 
access

● Access + Refresh token
● If a user credential is revoked, user has max. 

10min more to access service

● Auth only involved if access token is expired

type TokenClaims struct {
MailFrom string `json:"mail_from,omitempty"`
MailTo   string `json:"mail_to,omitempty"`
jwt.Claims

}
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Load Balancing
● What is load balancing

● Distribution of workloads across multiple computing 
resources
— Workloads (requests)

— Computing resources (machines)

● Distributes client requests or network load efficiently 
across multiple servers [link]
— E.g., service get popular, high load on service

→ horizontal scaling

● Why load balancing

● Ensures high availability and reliability by sending 
requests only to servers that are online

● Provides the flexibility to add or subtract servers as 
demand dictates Users
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https://www.nginx.com/resources/glossary/load-balancing
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Caddy
• Configuration: dynamic

• Static: Caddyfile

• One-liners:

• Quick, local file server: caddy file-server

• Reverse proxy: caddy reverse-proxy --from 
example.com --to localhost:9000

• Open Source, software-based load balancer:
https://github.com/caddyserver/caddy

•  “Caddy 2 is a powerful, enterprise-ready, open 
source web server with automatic HTTPS 
written in Go”

• L7 load balancer

• Reverse proxy

• Static file server

• HTTP/1.1, HTTP/2, and experimental HTTP/3

• Caddy on docker hub
:7070
reverse_proxy 127.0.0.1:8081 127.0.0.1:8080 {
  unhealthy_status 5xx
  fail_duration 5s
}

https://caddyserver.com/
https://github.com/caddyserver/caddy
https://caddyserver.com/docs/caddyfile/directives/reverse_proxy
https://hub.docker.com/_/caddy
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Dockerfile
● Example: caddy as LB, go as Service

● docker-compose up --scale services=5

#docker-compose.yml
version: '3'
services:
  services:
    build: .
    ports:
      - "8080-8085:8080"
  lb:
    image: caddy
    ports:
      - "7070:7070"
    volumes:
      - ./Caddyfile:/etc/caddy/Caddyfile

#Caddyfile
:7070
reverse_proxy * {
  to http://dsy-services-1:8080
  to http://dsy-services-2:8080
  to http://dsy-services-3:8080
  to http://dsy-services-4:8080
  to http://dsy-services-5:8080

  lb_policy round_robin
  lb_try_duration 1s
  lb_try_interval 100ms
  fail_duration 10s
  unhealthy_latency 1s
}
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CORS
● CORS =  Cross-Origin Resource Sharing

● For security reasons, browsers restrict cross-origin 
HTTP requests initiated from scripts (among others)

● Mechanism to instruct browsers that runs a resource 
from origin A to run resources from origin B

● Solution

● Use reverse proxy with builtin webserver, e.g., nginx, 
or user reverse proxy with external webserver.

→ The client only sees the same origin for the API 
and the frontend assets

● Access-Control-Allow-Origin: https://foo.example

→ For dev: Access-Control-Allow-Origin: *

● w.Header().Set("Access-Control-Allow-Origin", 
"*")

● Reverse proxy

Users
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Backend service 1

Backend service 2

Frontend

Users
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Backend service 2

Frontend

CORS

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://foo.example/
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OverlayFS
● Example

● The lower directory can be read-only or could 
be an overlay itself

● The upper directory is normally writable

● The workdir is used to prepare files as they are 
switched between the layers.

● Read only

● How to remove data in read-only lowerdir
● Mark as deleted in upperdir

cd /tmp
mkdir lower upper workdir overlay

sudo mount -t overlay -o \
lowerdir=/tmp/lower,\
upperdir=/tmp/upper,\
workdir=/tmp/workdir \
none /tmp/overlay

cd /tmp
mkdir lower upper workdir overlay

sudo mount -t overlay -o 
lowerdir=/tmp/lower1:/tmp/lower2 /tmp/overlay

cd /tmp
mkdir lower upper workdir overlay

sudo mount -t overlay -o \
lowerdir=/tmp/lower1:/tmp/lower2,\
upperdir=/tmp/upper,\
workdir=/tmp/workdir \
none /tmp/overlay

https://blog.programster.org/overlayfs
https://wiki.archlinux.org/index.php/Overlay_filesystem
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Cgroups
● control groups: limits, isolates, prioritization 

of  CPU, memory, disk I/O, network
● Install tools

● Create two groups
● Assign 20% of CPU and 80% of CPU

● Execute bash → test CPU

● Resource control with docker

ls /sys/fs/cgroup

sudo apt install cgroup-tools / yay -S libcgroup

cgcreate -g cpu:red
cgcreate -g cpu:blue

echo -n "20" > /sys/fs/cgroup/blue/cpu.weight
echo -n "80" > /sys/fs/cgroup/red/cpu.weight

cgexec -g cpu:blue bash
cgexec -g cpu:red bash

sha256sum /dev/urandom #does not work?
taskset -c 0 sha256sum /dev/urandom

docker run \
--name=low_prio \
--cpuset-cpus=0 \
--cpu-shares=20 \
alpine sha256sum /dev/urandom

docker run \
--name=high_prio \
--cpuset-cpus=0 \
--cpu-shares=80 \
alpine sha256sum /dev/urandom

https://en.wikipedia.org/wiki/Cgroups
https://www.cloudsigma.com/manage-docker-resources-with-cgroups/
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Separate Networks
● Linux Network Namespaces

● provide isolation of the system resources 
associated with networking [source]

● Create virtual ethernet connection

● Configure network

● Run server

● Server can be contacted

● How to connect to outside?
● E.g. layer 3

ip netns add testnet
ip netns list

ip link add veth0 type veth peer name veth1 netns testnet
ip link list #?
ip netns exec testnet <cmd>

ip addr add 10.1.1.1/24 dev veth0
ip netns exec testnet ip addr add 10.1.1.2/24 dev veth1
ip netns exec testnet ip link set dev veth1 up

ip netns exec blue nc –l 8000

iptables -t nat -A POSTROUTING -s 10.1.1.0/24 -o enp9s0 -j MASQUERADE
iptables -A FORWARD -j ACCEPT #open up wide…

https://blog.scottlowe.org/2013/09/04/introducing-linux-network-namespaces/
https://www.man7.org/linux/man-pages/man7/network_namespaces.7.html
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Back in the old days…
● OTS: apt-get / yum / pacman install 

package, e.g., Apache – configure – run

● Custom SW: Java: war, provide custom 
/etc/init.d script with binary or script

● Problem:
● It runs on my machine, who installs Java in the 

right version?

● What happens on crashes?

● Scaling? 

● HW defect?

● Misconfiguration - access to complete PC?

● VMs / Containers help a lot

● No access to complete PC, can scale, move to 
another machine, pre-install the right Java version

● So, how to deploy your app?

● Ansible (Progress Chef, Puppet) - and more
— Playbooks with ssh host list – your host needs to run 

the same OS (apt/yum)

● Docker Swarm
— Works with docker-compose.yml – with docker you 

package your application the same way on any 
platform - simple
— Which to use? [link]

● Kubernetes
— Widespread

https://en.wikipedia.org/wiki/Out_of_the_box_(feature)
https://en.wikipedia.org/wiki/WAR_(file_format)
https://en.wikipedia.org/wiki/Ansible_(software)
https://en.wikipedia.org/wiki/Progress_Chef
https://en.wikipedia.org/wiki/Puppet_(software)
https://en.wikipedia.org/wiki/Comparison_of_open-source_configuration_management_software
https://dockerswarm.rocks/
https://circleci.com/blog/docker-swarm-vs-kubernetes/
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Docker Swarm
• Create service

• docker service create --name registry --publish 
5000:5000 registry:2

• Where to find the docker image

• Check service

• docker service ls

• Many options in docker-compose

• docker stack deploy --compose-file docker-
compose.yml

https://codefresh.io/docker-tutorial/deploy-docker-compose-v3-swarm-mode-cluster/
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Kubernetes
● Getting Started with Kubernetes: Minikube, k3s

● Minikube: Run a single-node Kubernetes cluster locally

● kubectl: Command-line tool for managing a Kubernetes 
cluster

● Kubernetes Dashboard: Web-based user interface for 
managing a cluster

● Deploy any containerized application

● Use health endpoints
— Liveness/Readiness

● Official documentation: https://kubernetes.io/docs 

● Kubernetes tutorials: https://kubernetes.io/training 

● Youtube course
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Service Service
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Source: https://cloudwithease.com/what-is-kubernetes/ 

https://minikube.sigs.k8s.io/docs/start/
https://k3s.io/
https://loft.sh/blog/kubernetes-probes-startup-liveness-readiness/
https://kubernetes.io/docs
https://kubernetes.io/training
https://www.youtube.com/watch?v=X48VuDVv0do
https://cloudwithease.com/what-is-kubernetes/
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What is Mastodon?
● “A mastodon (mastós 'breast' + odoús 

'tooth') is any proboscidean belonging to the 
extinct genus Mammut”
[link]

● A decentralized, open-source social network
● “Mastodon is free and open-source software 

for running self-hosted social networking 
services” [link]

● Launched in 2016 by Eugen Rochko, now 
with Mastodan gGmbH [link]
● Alternative to traditional social media platforms, 

offering greater privacy, user control, and an 
ad-free experience.

https://en.wikipedia.org/wiki/Mastodon
https://en.wikipedia.org/wiki/Mastodon_(social_network)
https://joinmastodon.org/about
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Federation
● ActivityPub – decentralized communication 

protocol [link]
● Open, decentralized protocol developed by the 

World Wide Web Consortium (W3C)

● Enables communication and interaction 
between various social networks and 
applications

● Uses URIs (Uniform Resource Identifiers) for 
uniquely identifying objects and users

● Sends, receives, and processes activities such 
as Toots, Likes, and Follower relationships

● Inbox/Outbox

source

https://www.w3.org/TR/activitypub/
https://en.wikipedia.org/wiki/ActivityPub
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Tor
● How it works

https://www.torproject.org/about/overview.html.en
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Tor
● Alice to Bob
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Tor
● Alice to Jane
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