
01.10.2023

Blockchain (BlCh)
Repetition DSy – part 2

Thomas Bocek

Blockchain2

Lecture 5

Distributed Systems3

Architecture
● Server side rendering (SSR) ● Single page application (SPA), client side

rending (CSR)

Users

Load balancer

DB

Service
Instance 1

Service
Instance 2

HTML

Users

Load balancer
DB

Service
Instance 1

Service
Instance 2API

Frontend
HTML

Distributed Systems4

Examples
● Static site rendering: dsl.i.ost.ch

● Componets: nginx

● Java daemon who reacts on file changes in a
director. If markdown file changes → create
HTML, copy it to nginx directory

● Server side rendering (e.g., handlebarsjs)
● Simple example: ssr.go (no template)

● Components: go-based server

● SPA

● Components: node server, go server

● Hydration
● Best of both worlds, but adds complexity,

needs JavaScript in the backend

● E.g., react: hydrate() instead of render()
method – choices... source

https://dev.to/ajcwebdev/what-is-partial-hydration-and-why-is-everyone-talking-about-it-3k56#react

5

Authentication
● Authentication

● Single-factor authentication
— E.g. password

● Multi-factor authentication / 2FA
— E.g. password and software token, SMS (15.03.2021)

● Password rules

● Don’t use:
— The name of a pet, child, family member, or significant other

— Anniversary dates and birthdays

— Birthplace

— Name of a favorite holiday

— Something related to a favorite sports team

— The word "password“

● Don’t’ reuse passwords, use password managers

● Don’t enter passwords on unencrypted sites

● Password length:
password cracking with 5000$ in 2018 with
hashcat
— Hashtype: WPA/WPA2: 1190.5 kH/s

● Combinations depend on PW complexity

Pw length Combinations Time

6 11m 9s

7 656m 9m

8 38b 8h

9 7 *1015 186y

10 4 *1017 11ky

11 2 *1019 665ky

12 1 *1021 38my

https://www.vice.com/en/article/y3g8wb/hacker-got-my-texts-16-dollars-sakari-netnumber
https://techland.time.com/2013/08/08/google-reveals-the-10-worst-password-ideas/?iid=biz-article-mostpop2
https://www.netmux.com/blog/how-to-build-a-password-cracking-rig
https://github.com/hashcat/hashcat
https://math.stackexchange.com/questions/739874/how-many-possible-combinations-in-8-character-password

6

Authentication
● JSON-based access tokens

— Header: {"alg" : "HS256"}

— Payload: {“sub" : "tom", "role" : "admin", “exp" :
1422779638}

● Signature (simple): keyed-hash message
— ~hash(base64(header)+base64(payload) + secret token)

● Client can store user_token in
— localStorage.setItem(“token", userToken);

● Example in golang with JWT
— Tutorial: here and here

● OAuth - protocol for authorization 3rd party
integration

● Grant access on other websites without giving them
the passwords

source

https://github.com/square/go-jose/tree/v2
https://jelinden.fi/blog/simple-golang-jwt-authorize/xFThAkKmR
https://www.sohamkamani.com/golang/2019-01-01-jwt-authentication/
https://en.wikipedia.org/wiki/OAuth
https://www.sohamkamani.com/golang/2019-01-01-jwt-authentication/

7

Access Token / Refresh Token
● Access Token only short lifetime, e.g.,

10min.
● If public key / secret is known, the content in

the token can be trusted, e.g., in the serivce

● Can have userId, role, etc.
— No need to query DB for those information, e.g.:

● Refresh Token longer lifetime, e.g., 6 month
● A refresh token is used to get a new access

token

● IAM / Auth server creates access tokens

● Only access token, with long lifetime
● If a user credential is revoked – how to inform

every service?

● Only refresh token
● Tightly coupled Service/Auth, every request to

Service, Auth needs to be involved for every
access

● Access + Refresh token
● If a user credential is revoked, user has max.

10min more to access service

● Auth only involved if access token is expired

type TokenClaims struct {
MailFrom string `json:"mail_from,omitempty"`
MailTo string `json:"mail_to,omitempty"`
jwt.Claims

}

Blockchain8

Lecture 6

Distributed Systems9

Load Balancing
● What is load balancing

● Distribution of workloads across multiple computing
resources
— Workloads (requests)

— Computing resources (machines)

● Distributes client requests or network load efficiently
across multiple servers [link]
— E.g., service get popular, high load on service

→ horizontal scaling

● Why load balancing

● Ensures high availability and reliability by sending
requests only to servers that are online

● Provides the flexibility to add or subtract servers as
demand dictates Users

LB

S1

S2

S3

S4

Users

Service
Instance 1REST

Users

Load balancer

Service
Instance 1

Service
Instance 2

REST

https://www.nginx.com/resources/glossary/load-balancing

Distributed Systems10

Caddy
• Configuration: dynamic

• Static: Caddyfile

• One-liners:

• Quick, local file server: caddy file-server

• Reverse proxy: caddy reverse-proxy --from
example.com --to localhost:9000

• Open Source, software-based load balancer:
https://github.com/caddyserver/caddy

• “Caddy 2 is a powerful, enterprise-ready, open
source web server with automatic HTTPS
written in Go”

• L7 load balancer

• Reverse proxy

• Static file server

• HTTP/1.1, HTTP/2, and experimental HTTP/3

• Caddy on docker hub
:7070
reverse_proxy 127.0.0.1:8081 127.0.0.1:8080 {
 unhealthy_status 5xx
 fail_duration 5s
}

https://caddyserver.com/
https://github.com/caddyserver/caddy
https://caddyserver.com/docs/caddyfile/directives/reverse_proxy
https://hub.docker.com/_/caddy

Distributed Systems11

Dockerfile
● Example: caddy as LB, go as Service

● docker-compose up --scale services=5

#docker-compose.yml
version: '3'
services:
 services:
 build: .
 ports:
 - "8080-8085:8080"
 lb:
 image: caddy
 ports:
 - "7070:7070"
 volumes:
 - ./Caddyfile:/etc/caddy/Caddyfile

#Caddyfile
:7070
reverse_proxy * {
 to http://dsy-services-1:8080
 to http://dsy-services-2:8080
 to http://dsy-services-3:8080
 to http://dsy-services-4:8080
 to http://dsy-services-5:8080

 lb_policy round_robin
 lb_try_duration 1s
 lb_try_interval 100ms
 fail_duration 10s
 unhealthy_latency 1s
}

Distributed Systems12

CORS
● CORS = Cross-Origin Resource Sharing

● For security reasons, browsers restrict cross-origin
HTTP requests initiated from scripts (among others)

● Mechanism to instruct browsers that runs a resource
from origin A to run resources from origin B

● Solution

● Use reverse proxy with builtin webserver, e.g., nginx,
or user reverse proxy with external webserver.

→ The client only sees the same origin for the API
and the frontend assets

● Access-Control-Allow-Origin: https://foo.example

→ For dev: Access-Control-Allow-Origin: *

● w.Header().Set("Access-Control-Allow-Origin",
"*")

● Reverse proxy

Users

LB

Backend service 1

Backend service 2

Frontend

Users

LB
 / R

P

Backend service 1

Backend service 2

Frontend

CORS

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://foo.example/

Blockchain13

Lecture 7

Introduction

Physical machine

Hypervisor

G
u

e
st

 O
S

A
p

p
1

A
p

p
2

A
p

p
3

Physical machine

G
u

e
st

 O
S

G
u

e
st

 O
S

Host OS

Docker

A
p

p
1

A
p

p
2

A
p

p
3

Host OS

Physical machine

Hypervisor

Guest OS

A
p

p
1

A
p

p
3

G
u

e
st

 O
S

Host OS

Docker

A
p

p
2

• Virtual machines • Container • Both

15

OverlayFS
● Example

● The lower directory can be read-only or could
be an overlay itself

● The upper directory is normally writable

● The workdir is used to prepare files as they are
switched between the layers.

● Read only

● How to remove data in read-only lowerdir
● Mark as deleted in upperdir

cd /tmp
mkdir lower upper workdir overlay

sudo mount -t overlay -o \
lowerdir=/tmp/lower,\
upperdir=/tmp/upper,\
workdir=/tmp/workdir \
none /tmp/overlay

cd /tmp
mkdir lower upper workdir overlay

sudo mount -t overlay -o
lowerdir=/tmp/lower1:/tmp/lower2 /tmp/overlay

cd /tmp
mkdir lower upper workdir overlay

sudo mount -t overlay -o \
lowerdir=/tmp/lower1:/tmp/lower2,\
upperdir=/tmp/upper,\
workdir=/tmp/workdir \
none /tmp/overlay

https://blog.programster.org/overlayfs
https://wiki.archlinux.org/index.php/Overlay_filesystem

16

Cgroups
● control groups: limits, isolates, prioritization

of CPU, memory, disk I/O, network
● Install tools

● Create two groups
● Assign 20% of CPU and 80% of CPU

● Execute bash → test CPU

● Resource control with docker

ls /sys/fs/cgroup

sudo apt install cgroup-tools / yay -S libcgroup

cgcreate -g cpu:red
cgcreate -g cpu:blue

echo -n "20" > /sys/fs/cgroup/blue/cpu.weight
echo -n "80" > /sys/fs/cgroup/red/cpu.weight

cgexec -g cpu:blue bash
cgexec -g cpu:red bash

sha256sum /dev/urandom #does not work?
taskset -c 0 sha256sum /dev/urandom

docker run \
--name=low_prio \
--cpuset-cpus=0 \
--cpu-shares=20 \
alpine sha256sum /dev/urandom

docker run \
--name=high_prio \
--cpuset-cpus=0 \
--cpu-shares=80 \
alpine sha256sum /dev/urandom

https://en.wikipedia.org/wiki/Cgroups
https://www.cloudsigma.com/manage-docker-resources-with-cgroups/

17

Separate Networks
● Linux Network Namespaces

● provide isolation of the system resources
associated with networking [source]

● Create virtual ethernet connection

● Configure network

● Run server

● Server can be contacted

● How to connect to outside?
● E.g. layer 3

ip netns add testnet
ip netns list

ip link add veth0 type veth peer name veth1 netns testnet
ip link list #?
ip netns exec testnet <cmd>

ip addr add 10.1.1.1/24 dev veth0
ip netns exec testnet ip addr add 10.1.1.2/24 dev veth1
ip netns exec testnet ip link set dev veth1 up

ip netns exec blue nc –l 8000

iptables -t nat -A POSTROUTING -s 10.1.1.0/24 -o enp9s0 -j MASQUERADE
iptables -A FORWARD -j ACCEPT #open up wide…

https://blog.scottlowe.org/2013/09/04/introducing-linux-network-namespaces/
https://www.man7.org/linux/man-pages/man7/network_namespaces.7.html

Blockchain18

Lecture 8

Distributed Systems19

Back in the old days…
● OTS: apt-get / yum / pacman install

package, e.g., Apache – configure – run

● Custom SW: Java: war, provide custom
/etc/init.d script with binary or script

● Problem:
● It runs on my machine, who installs Java in the

right version?

● What happens on crashes?

● Scaling?

● HW defect?

● Misconfiguration - access to complete PC?

● VMs / Containers help a lot

● No access to complete PC, can scale, move to
another machine, pre-install the right Java version

● So, how to deploy your app?

● Ansible (Progress Chef, Puppet) - and more
— Playbooks with ssh host list – your host needs to run

the same OS (apt/yum)

● Docker Swarm
— Works with docker-compose.yml – with docker you

package your application the same way on any
platform - simple
— Which to use? [link]

● Kubernetes
— Widespread

https://en.wikipedia.org/wiki/Out_of_the_box_(feature)
https://en.wikipedia.org/wiki/WAR_(file_format)
https://en.wikipedia.org/wiki/Ansible_(software)
https://en.wikipedia.org/wiki/Progress_Chef
https://en.wikipedia.org/wiki/Puppet_(software)
https://en.wikipedia.org/wiki/Comparison_of_open-source_configuration_management_software
https://dockerswarm.rocks/
https://circleci.com/blog/docker-swarm-vs-kubernetes/

Distributed Systems20

Docker Swarm
• Create service

• docker service create --name registry --publish
5000:5000 registry:2

• Where to find the docker image

• Check service

• docker service ls

• Many options in docker-compose

• docker stack deploy --compose-file docker-
compose.yml

https://codefresh.io/docker-tutorial/deploy-docker-compose-v3-swarm-mode-cluster/

Distributed Systems21

Kubernetes
● Getting Started with Kubernetes: Minikube, k3s

● Minikube: Run a single-node Kubernetes cluster locally

● kubectl: Command-line tool for managing a Kubernetes
cluster

● Kubernetes Dashboard: Web-based user interface for
managing a cluster

● Deploy any containerized application

● Use health endpoints
— Liveness/Readiness

● Official documentation: https://kubernetes.io/docs

● Kubernetes tutorials: https://kubernetes.io/training

● Youtube course

P
od

P
od

Deployment

P
od

P
od

Deployment

Service Service

Ingress

Source: https://cloudwithease.com/what-is-kubernetes/

https://minikube.sigs.k8s.io/docs/start/
https://k3s.io/
https://loft.sh/blog/kubernetes-probes-startup-liveness-readiness/
https://kubernetes.io/docs
https://kubernetes.io/training
https://www.youtube.com/watch?v=X48VuDVv0do
https://cloudwithease.com/what-is-kubernetes/

Blockchain22

Lecture 9

Distributed Systems23

What is Mastodon?
● “A mastodon (mastós 'breast' + odoús

'tooth') is any proboscidean belonging to the
extinct genus Mammut”
[link]

● A decentralized, open-source social network
● “Mastodon is free and open-source software

for running self-hosted social networking
services” [link]

● Launched in 2016 by Eugen Rochko, now
with Mastodan gGmbH [link]
● Alternative to traditional social media platforms,

offering greater privacy, user control, and an
ad-free experience.

https://en.wikipedia.org/wiki/Mastodon
https://en.wikipedia.org/wiki/Mastodon_(social_network)
https://joinmastodon.org/about

Distributed Systems24

Federation
● ActivityPub – decentralized communication

protocol [link]
● Open, decentralized protocol developed by the

World Wide Web Consortium (W3C)

● Enables communication and interaction
between various social networks and
applications

● Uses URIs (Uniform Resource Identifiers) for
uniquely identifying objects and users

● Sends, receives, and processes activities such
as Toots, Likes, and Follower relationships

● Inbox/Outbox

source

https://www.w3.org/TR/activitypub/
https://en.wikipedia.org/wiki/ActivityPub

Distributed Systems25

Tor
● How it works

https://www.torproject.org/about/overview.html.en

Distributed Systems26

Tor
● Alice to Bob

Distributed Systems27

Tor
● Alice to Jane

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Load balancing
	Caddy
	Dockerfile
	CORS
	Slide 13
	Introduction
	OverlayFS
	Cgroups
	Separate Networks
	Slide 18
	Slide 19
	Docker Swarm (2)
	Kubernetes (3)
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

