
17.09.2023

Blockchain (BlCh)
Repetition DSy – part 1

Thomas Bocek

Blockchain2

Lecture 1

Blockchain3

Distributed Systems Motivation
● Why Distributed Systems

● Scaling

● Location

● Fault-tolerance (bitflips, outages)

ht
tp

s:
//w

w
w

.in
ka

nd
sw

itc
h.

co
m

/lo
ca

l-f
irs

t.h
tm

l

Submarine Cable Map

ho
riz

on
ta

l

ve
rt

ic
al

https://en.wikipedia.org/wiki/Moore%27s_law
https://blogs.oracle.com/linux/attack-of-the-cosmic-rays-v2
https://subtelforum.com/category/cable-faults-maintenance/
https://www.inkandswitch.com/local-first.html
https://www.submarinecablemap.com/

Blockchain4

Lecture 2

Blockchain5

Distributed Systems Categorization
“Controlled” Distributed Systems

● 1 responsible organization

● Low churn

● Examples:
● Amazon DynamoDB

● Client/server

● “Secure environment”

● High availability

● Can be homogeneous / heterogeneous

“Fully” Decentralized Systems

● N responsible organizations

● High churn

● Examples:
● BitTorrent

● Blockchain

● “Hostile environment”

● Unpredictable availability

● Is heterogeneous

Blockchain6

Distributed Systems Categorization
“Controlled” Distributed Systems

● Mechanisms that work well:
● Consistent hashing (DynamoDB, Cassandra)

● Master nodes, central coordinator

● Network is under control or client/server →
no NAT issues

“Fully” Decentralized Systems

● Mechanisms that work well:
● Consistent hashing (DHTs)

● Flooding/broadcasting - Bitcoin

● NAT and direct connectivity huge problem

Blockchain7

Distributed Systems Categorization
“Controlled” Distributed Systems

● Consistency
● Leader election (Zookeeper, Paxos, Raft)

● Replication principles
● More replicas: higher availability, higher

reliability, higher performance, better
scalability, but: requires maintaining
consistency in replicas

● Transparency principles apply

“Fully” Decentralized Systems

● Consistency
● Weak consistency: DHTs

● Nakamoto consensus (aka proof of work)

● Proof of stake – Leader election, PBFT protocols
Is Bitcoin eventually consistent?
— Some argue no, some argue it has even stronger

guarantees [link]

● Replication principles apply to fully
decentralized systems as well

● Transparency principles apply

https://hackingdistributed.com/2016/03/01/bitcoin-guarantees-strong-not-eventual-consistency/

Blockchain8

Distributed Systems Categorization
● Spring Term – Distributed Systems (DSy)

● Tightly/loosely coupled

● Heterogeneous systems

● Small-scale systems

● Distributed systems

(we will also talk about blockchains in this
lecture)

● Fall Term – Blockchain (BlCh)

● Loosely coupled

● Heterogeneous systems

● Large-scale systems

● Decentralized systems

(we will also talk about distributed systems in
this lecture, but DSy is highly recommended)

Blockchain9

Lecture 3

Distributed Systems10

Pro/Cons - Opinion
● Monorepo

● Tight coupling of projects
— E.g., generating openapi.yml from backend, generate

types for frontend → simply copy

● Everyone sees all code / commits

● Encourages code sharing within organization

● Scaling: large repos, specialized tooling

● Polyrepo
● Loose coupling of projects

— If you want to generate openapi.yml, you need access
from the backend repository to the frontend (e.g.,
curl+token)

● Fine grained access control
● Encourages code sharing across organizations
● Scaling: many projects, special coordination

● Opinion: Accenture - “From my experience, for a smaller team, starting with mono-repo is
always safe and easy to start. Large and distributed teams would benefit more from poly-repo”

● My opinion: for small teams and “independent” project, use polyrepo. (I worked with small
teams with mono and polyrepo, I have worked in big projects with polyrepos, but never in a big
project with monorepos). If you have a tight coupling between projects (OpenAPI), use
monorepos.

● Other opinion (sales pitch): https://monorepo.tools

K
ey

 D
iff

er
en

ce
s

https://www.accenture.com/us-en/blogs/software-engineering-blog/how-to-choose-between-mono-repo-and-poly-repo
https://monorepo.tools/
https://github.com/joelparkerhenderson/monorepo-vs-polyrepo#key-differences

Blockchain11

Networking: Layers
● Networking: Each vendor had its own proprietary solution - not compatible with another solution

● IPX/SPX – 1983, AppleTalk 1985, DECnet 1975, XNS 1977

● Nowadays most vendors build compatible networks hardware/software from different vendors

● Cisco, Dell, HP, Huawei, Juniper, Lenovo, Linksys, Netgear, MicroTik, Siemens, Ubiquiti, etc.

● Goal of layers: interoperability

● 1984: ISO 7498 - The Basic Reference Model for Open Systems Interconnection

OSI model

Application

Presentation

Session

Transport

Network

Data link

Pysical

"Internet model"

Application

Transport

Internet

Link

Data

DataTCP Header

DataTCP HeaderIP Header

DataTCP HeaderIP HeaderEthernet Header

https://en.wikipedia.org/wiki/IPX/SPX
https://en.wikipedia.org/wiki/AppleTalk
https://en.wikipedia.org/wiki/DECnet
https://en.wikipedia.org/wiki/Xerox_Network_Systems

Blockchain12

Layer 4 - TCP
• Connection establishment

• SYN, SYN-ACK, ACK (three way)

• Initiates TCP session: initial sequence number is ~
random

• Connection termination

• FIN, ACK + FIN, ACK (three/four way)

• 3-way handshake, when host 1 sends a FIN and host
2 replies with a FIN & ACK

• Sequences and ACKs

• Identification each byte of data

• Order of the bytes → reconstruction

• Detecting lost data: RTO, DupACK:

• Retransmission timeout

• If no ACK is received aftert timout (e.g. 2xRTT),
resend.

● Duplicate cumulative acknowledgements,
selective ACK [link]

• ACKs for last consecutive packets

• 3 times same ACK → retransmit missing
packets (fast retransmit)

Host 1 Host 2
SYN (SEQ=x)

SYN(SEQ=y, ACK=x+1)

ACK (SEQ=x+1, ACK=y+1)

Host 1 Host 2
FIN (SEQ=x, ACK=y)

ACK(SEQ=y, ACK=x+1)

ACK (SEQ=x, ACK=y+1)

FIN(SEQ=y, ACK=x+1)

https://en.wikipedia.org/wiki/TCP_sequence_prediction_attack
https://accedian.com/blog/network-packet-loss-retransmissions-and-duplicate-acknowledgements/

Blockchain13

TCP/IP from an Application Developer View
● Server in golang (repo)

● git clone
https://github.com/tbocek/DSy

● Download GoLand, or others

● go run server.go → server

● Listening on TCP port 8081

● Return string in uppercase

● Node.js version

● Download WebStorm, or other

● Client:

● nc localhost 8081

package main
import ("bufio"
 "fmt"
 "net"
 "strings")
func main() {
 fmt.Println("Launching server...")
 ln, _ := net.Listen("tcp", ":8081") // listen
on all interfaces
 for {
 conn, _ := ln.Accept() // accept
connection on port
 message, _ :=
bufio.NewReader(conn).ReadString('\n') //read line
 fmt.Print("Message Received:",
string(message))
 newMessage := strings.ToUpper(message)
//change to upper
 conn.Write([]byte(newMessage + "\n"))
//send upper string back
 }
}

const net = require('net');
const server = new net.Server();
server.listen(8081, function() {
 console.log('Launching server...');
});

server.on('connection', function(socket) {
 socket.on('data', function(chunk) {
 console.log(`Data received from client: $
{chunk.toString()}`);

socket.write(chunk.toString().toUpperCase() +
"\n");
 });
});

https://github.com/tbocek/FS21
https://github.com/tbocek/DSy
https://www.jetbrains.com/go/
https://golang.org/doc/editors.html
https://www.jetbrains.com/webstorm/
https://www.credencys.com/blog/ides-for-nodejs-app-development/

Blockchain14

Lecture 4

Blockchain15

Layer 4 – TCP + TLS
• Security: Transport Layer Security (TLS)

1. "client hello" lists cryptographic information,
TLS version, ciphers/keys

2. "server hello" chosen cipher, the session ID,
random bytes, digital certificate (checked by
client), optional: "client certificate request"

3. Key exchange using random bytes, now
server and client can calc secret key

4. "finished" message, encrypted with the
secret key

• 3 RTT to send first byte, 4RTT to receive
first byte

https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_8.0.0/com.ibm.mq.sec.doc/q009930_.htm

SYN/ACK
SYN/ACK

ACK

1.) 2.)

3.)

4.)

App Data

App Data

https://hpbn.co/transport-layer-security-tls/
https://en.wikipedia.org/wiki/Transport_Layer_Security#Algorithms
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_8.0.0/com.ibm.mq.sec.doc/q009930_.htm

Blockchain16

Layer 4 – TCP + TLS
• Ping to Australia: 329ms

• One way ~ 165ms

• TCP + TLS handshake:

• 3RTT = 987ms! No data sent yet

• TLS 1.3, finished Aug 2018
- 1 RTT instead of 2

- 1.) Client Hello, Key Share

- 2.) Server Hello, key Share, Verify Certificate,
Finished

- 0 RTT possible, for previous connections, loosing
perfect forward secrecy

• 90% of browsers used already support it

SYN/ACK
SYN/ACK

ACK

1.) 2.)
App Data

App Data

https://medium.com/@vanrijn/what-is-new-with-tls-1-3-e991df2caaac
https://caniuse.com/#search=tls%201.3

QUIC / HTTP/3
• QUIC: 1RTT connection + security handshake

• For known connections: 0RTT

• Built in security

• “Google's 'QUIC' TCP alternative
slow to excite anyone outside
Google” [link] (9%, 25%, 75%)

- Facebook

- Cloudflare, state of HTTP

• Example Australia: from 987ms to 329ms

Server Hello

Client Hello

Finished

App Data
App Data

Param
Param

https://blog.apnic.net/2019/03/04/a-quick-look-at-quic/
https://www.theregister.com/2018/01/17/quic_takeup_is_slow/
https://w3techs.com/technologies/details/ce-quic
https://w3techs.com/technologies/details/ce-http3
https://caniuse.com/?search=http3
https://engineering.fb.com/2022/07/06/networking-traffic/watch-metas-engineers-discuss-quic-and-tcp-innovations-for-our-network/
https://blog.cloudflare.com/landscape-of-api-traffic/
https://blog.cloudflare.com/the-state-of-http-in-2022/

18

QUIC / HTTP3
• Multiplexing in HTTP/2

• HTTP/1 → HTTP/2

• HTTP/2: Head-of-line blocking

• One packet loss, TCP needs to be ordered

• QUIC can multiplex requests: one stream does not affect
others

• HTTP/3 is great, but…

• NAT → SYN, ACK, FIN, conntrack
knows when connection ends, not
with QUIC, timeouts, new entries,
many entries

• HTTP header compression,
referencing previous headers

• Many TCP optimizations

(#1) GET b.css part 1 (#2) GET a.js part 1 (#3) GET b.css part 2

(s1) GET b.css part 1 (s2) GET a.js part 1 (s1) GET b.css part 2

source: https://blog.cloudflare.com/the-road-to-quic/

https://blog.cloudflare.com/the-road-to-quic/
https://en.wikipedia.org/wiki/TCP_Fast_Open
https://blog.cloudflare.com/the-road-to-quic/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Networking: Layers
	Layer 4 - TCP
	TCP/IP from an Application Developer View
	Slide 14
	Layer 4 – TCP + TLS
	Layer 4 – TCP + TLS (2)
	QUIC
	QUIC (2)

