
09.11.2022

Blockchain (BlCh)
Algorithms for DHT/P2P Systems

Thomas Bocek

Blockchain2

Algorithms for DHT Systems

Blockchain3

Mechanisms based on Hashing in KV storage
● Search in DHTs / consistent hashing

● DHT.get(h(«Institut für Software»))

● In order to find it: DHT.put(h(«Institut für Software»), value)

● Keywords

● DHT.get(h(«Institut»))

● Find it: DHT.put(h(«Institut»), value), DHT.put(h(«für»), value), DHT.put(h(«Software»), value)

● value points to h(«Institut für Software»)

● Keywords drawbacks

● Find good keywords → “the”, “a” are not good keywords

● Exact matches only

Blockchain4

Mechanisms based on Hashing in KV storage
● Find “Institut” or “Software” - OR Systems

● DHT.get(h(«Institut»)) or DHT.get(h(«Software»)),
combine results

● Find “Institut” and “Software” - AND Systems

1) DHT.get(h(«Institut»)) and DHT.get(h(«Software»)),
intersect results

2) DHT.get(h(«Institut») xor h(«Software»))

● In order to find it:

— DHT.put(h(«Institut») xor h(«Software»), value),

— DHT.put(h(«Institut») xor h(«für»), value)

— DHT.put(h(«für») xor h(«Software»), value)

● Combination needs to be known in advance

3) Use Bloom Filters

— bf = DHT.getBF(h(«Institut»)) and

DHT.get(h(«Software», bf))

— Sequential (less network, slower) vs. parallel

(more network, faster)

Blockchain5

Mechanisms based on Hashing in KV storage
● Similarity Search in DHT

● https://fastss.csg.uzh.ch

● Project that brings similarity search to HT / DHT

● Problem: Search for “netwrk” fails for DHTs

● Similarity: Edit distance / Levenshtein distance

● Min operations to transform one string into another, operations: insert, delete, replace

● Calculated in matrix size O(m x n)

https://fastss.csg.uzh.ch/

Blockchain6

Mechanisms based on Hashing in KV storage
● Example d(test,east) = 2 (remove a, insert t)

● Expensive operation if all words need testing

● Main idea: pre-calculate errors

● All possible errors? Neighbors for test with ed 2: test, testa, testaa, testab, ... , tea, teb, tec, ..., teaa,
teab, ... → 23883 more of those!

T E S T

0 1 2 3 4

E 1 1 1 2 3

A 2 2 2 2 3

S 3 3 3 2 3

T 4 3 4 3 2

Blockchain7

Mechanisms based on Hashing in KV storage
● FastSS pre-calculates with deletions only

● Neighbors for test with ed 2: test, est, st, et, es, tst,
tt, ts, tet, te, tes

● Pre-calculation on query and index

● 11 neighbors → 11 more queries, indexed
enlarged by 11 entries

● Example d(test,fest)=1

● test: indexed

● fest: query

Blockchain8

Mechanisms based on Hashing in KV storage
● Example d(test,east)=2

● test: indexed

● east: query

● FastSS with indexing Wikipedia
documents in systems with consistent
hashing

Blockchain9

Mechanisms based on Hashing in KV storage
● Index documents using

put(hash(document), document)

● Document (0x321) contains word test

● Index all neighbors (test, tes, tst, tet,
est) using put(hash(neighbor), point to
document)

● hash(“tes”) = 0x123

Blockchain10

Mechanisms based on Hashing in KV storage
● User searches for “tesx”

● Neighbors are generated (tesx, esx, tsx, tex, tes)

● get(hash(neighbor)) → 0x123

● Find pointer to document (0x321)

● document = get(0x321)

● Tests with edit distance 1, partially 2, ignoring delete
pos.

● Overhead (n choose k) for query and index

● Similarity search as series of put() and get()

Blockchain11

● Range Queries

● Problem: random insert vs. sequence insert

● Sequence → [0..n-1] [n..2n-1] [2n..3n-1] […] → peer responsible for range, hash it, store it, done.

— Insert 10 items: N = 5 → [0, 1, 2, 3, 4], [5, 6, 7, 8, 9] – sequential, 2 peers

— Insert 10 items: N = 5 → [0], [5], [10], [15], [20], [25], [30], [35], [40], [45] – random, 10 peers

— But random: worst case: 1 peers has 1 data item, range query for range [0..x] contacts x/n peers.

● Over-DHT

● PHT: trie (prefix tree); DST: segment → tree on top of DHT

● Main idea: hash of tree-node (resp. for range) → DHT

● PHT: Peer stores n data items, if n reached, splits data (moves data across peers)

● DST: stores data on each level (redundancy) up to a threshold

— No data splitting

Mechanisms based on Hashing in KV storage

Blockchain12

Mechanisms based on Hashing in KV storage
● Example:

● Set n = 2, m=8

● 1, “test”; 2, “hallo”;
3, “world”; 5, “sys”; 6, “ost”; 7, “ifs”

● Tree: store value

● Translate putDST(1, “test”) to

— put(hash([1-8]),”test”) → may be stored (only if

threshold not reached)

— put(hash([1-4]),”test”) → may be stored

— put(hash([1-2]),”test”) → will be stored

— Store putDST(2, “hallo”), putDST(3, “world”),

putDST(5, “sys”), …

● Query getDST(1..5) translates to

● get(hash[1-8]) → returns “1,test; 2,hallo”

● get(hash[1-4]) → returns “1,test; 2,hallo”

● get(hash[1-2]) → returns “1,test; 2,hallo”

● get(hash[3-4]) → returns “3,world”

● get(hash[5-8]) → returns “5,sys; 6,ost”

● get(hash[5-6]) → returns “5,sys; 6,ost”

Blockchain13

Mechanisms based on Hashing in KV storage
● Example:

● Set n = 2, m=8

● 1, “test”; 7, “ifs”

● Tree: store value

● Translate putDST(1, “test”) to

— put(hash([1-8]),”test”) → may be stored (only if

threshold not reached)

— put(hash([1-4]),”test”) → may be stored

— put(hash([1-2]),”test”) → will be stored

— Store putDST(7, “ifs”)

● Query getDST(1..5) translates to

● get(hash[1-8]) → returns “1,test; 7,ifs”

● get(hash[1-4]) → returns “1,test;”

● get(hash[5-8]) → returns “7,ifs”

● Range query as series of put() and get()

Blockchain14

Algorithms for P2P Systems

Blockchain15

Bloom Filter
● An array of m bits, initially all bits set to 0

● A bloom filter uses k independent hash functions

● h1, h2, …, hk with range {1, …, m}

● Each input is hashed with every hash function

● Set the corresponding bits in the vector

● Operations

● Insertion

— The bit A[hi(x)] for 1 < i < k are set to 1

● Query

— Yes if all of the bits A[hi(x)] are 1, no otherwise

● Deletion

— Removing an element from this simple Bloom filter is impossible

Strings

Hash Functions

Bloom Filter

Blockchain16

Query of an Element, m=18, k=3
● Insert x, y, z

● Query w

● Example for False-positives

● Insertions

— Hash („color printer“) => (1,4,6)

— Hash („digital camera“) => (3,4,5)

— Bloom filter (1,3,4,5,6)

● Query

— Hash („heat sensor“) => (3,4,6)

— Matches since bits 3,4,6 are all set to 1

● Online

● False-negative

● Query

— Hash (“color printer”) => (1,4,6) , matches (1,3,4,5,6) → no

false-negative
http://en.wikipedia.org/wiki/Bloom_filter

http://billmill.org/bloomfilter-tutorial/
http://en.wikipedia.org/wiki/Bloom_filter

Blockchain17

Properties
● Space Efficiency

● Any Bloom filter can represent the entire
universe of elements

— In this case, all bits are 1

● No Space Constraints

● Add never fails

● But false positive rate increases steadily as
elements are added

● Simple Operations

● Union of Bloom filters: bitwise OR

● Intersection of Bloom filters: bitwise AND

● No false negative, but false positive

● False-positive probability:

● n number of strings; k hash functions; m-bit
vector

=> Given m/n, there is an optimal
number of hash functions (opt. k = m/n ln 2)

(when 50% of the bits are set)

Blockchain18

Bloom Filter Variants
● Compressed Bloom Filters

● When the filter is intended to be passed as a message

● False-positive rate is optimized for the compressed
bloom filter (uncompressed bit vector m will be larger but
sparser)

● However, compression/decompression, more memory

● Generalized Bloom Filter

● Two type of hash functions gi (reset bits to 0)
and hj (set bits to 1)

● Start with an arbitrary vector (bits can be either 0 or 1)

● In case of collisions between gi and hj, bit is reset to 0

● Store more info with low false positive

● Produces either false positives or false negatives

● Counting Bloom Filters

● Entry in the filter not be a single bit but a counter

● Delete operation possible (decrementing counter)

● Variable-Increment Counting Bloom Filter

● Scalable Bloom Filter

● Adapt dynamically to number of elements, consist of
regular Bloom filters

● “A SBF is made up of a series of one or more (plain)
Bloom Filters; when filters get full due to the limit on the
fill ratio, a new one is added; querying is made by
testing for the presence in each filter”

● Others, e.g., Cuckoo filter

● Usage: e.g., fast search at LinkedIn

http://www.eecs.harvard.edu/~michaelm/NEWWORK/postscripts/cbf2.pdf
http://www.gta.ufrj.br/ftp/gta/TechReports/LVD05d.pdf
https://docs.google.com/a/axelra.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxvcmlyb3R0ZW5zdHJlaWNofGd4Ojc3Y2Q4ZTU4ZjVjODg0Zg
http://gsd.di.uminho.pt/members/cbm/ps/dbloom.pdf
https://www.cs.cmu.edu/~dga/papers/cuckoo-conext2014.pdf
https://engineering.linkedin.com/open-source/cleo-open-source-technology-behind-linkedins-typeahead-search

Blockchain19

Merkle Trees

● A Merkle tree is a binary hash tree containing leaf nodes

● Constructed bottom-up, i.e.,

● Used to summarize all transactions in a block

● To prove that a specific transaction is included in a block, a node only needs to produce hashes,
constituting a merkle path connecting the specific transaction to the root of the tree.

Blockchain20

Merkle Proofs

● A node can prove that transaction K is included in the block by producing a merkle path

● 𝒍𝒐𝒈𝟐 𝟏𝟔 = long𝟒 𝒉𝒂𝒔𝒉𝒆𝒔

Blockchain21

BitTorrent: Mechanisms
● Magnet links

● Magnet is URI scheme, does not point to a centralized tracker

— No centralized tracker: pointer to DHT

— General purpose, not only for BT

— magnet:?xl=1000&dn=song1.mp3&xt=urn:tree:tiger:2A3B…

● tree:tiger → Hash Tree

— Tree of hashes (|| → concatenation)

— hash 0 = hash(hash 0-0 || hash 0-1)

— hash 1 = hash(hash 1-0 || hash 1-1)

— Top hash = hash(hash 0 || hash 1)

● Merkle hash / hash tree also seen in
Bitcoin blocks (transactions), MAST (Merklized
Abstract Syntax Tree)

http://en.wikipedia.org/wiki/Hash_tree

https://bitcointechtalk.com/what-is-a-bitcoin-merklized-abstract-syntax-tree-mast-33fdf2da5e2f

https://en.wikipedia.org/wiki/Magnet_URI_scheme

Blockchain22

BitTorrent: Mechanisms
● Verification

● Peer A has top hash (root hash)

● Peer downloads C4 from peer B

— create hash 8

● Need hash 10, 13, 3 (uncle hash)

— Can be from peer B

● With 8,10,13,3 can create root hash

→ verify this root hash

● Usage: Blockchain, P2P filesharing, git,
Amazons Dynamo, ZFS

http://datatracker.ietf.org/doc/draft-ietf-ppsp-peer-protocol/ Section 5.2

http://datatracker.ietf.org/doc/draft-ietf-ppsp-peer-protocol/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

