
09.10.2022

Blockchain (BlCh)
Solidity

Thomas Bocek

Solidity IDE
● https://remix.ethereum.org

● In combination with Solidity Intellij plugin (not ideal)

https://remix.ethereum.org/
https://remix.ethereum.org/
https://remix.ethereum.org/

● Version Pragma

pragma solidity ^0.4.24; // not before 0.4.24, not after 0.5.0
● Comments

// This is a single-line comment.
/*
This is a
multi-line comment.
*/
● Data Types
byte, bytes2 to bytes32, bytes (same as byte[], but more expensive), string, int8 to
uint256, address, enum, bool

● Simple contract

contract SimpleStorage {
 uint256 storedData; // State variable
}

Solidity - http://solidity.readthedocs.io

https://consensys.net/blog/developers/solidity-best-practices-for-smart-contract-security/
https://learnxinyminutes.com/docs/solidity/
https://consensys.github.io/smart-contract-best-practices/

http://solidity.readthedocs.io/
https://consensys.net/blog/developers/solidity-best-practices-for-smart-contract-security/
https://learnxinyminutes.com/docs/solidity/
https://consensys.github.io/smart-contract-best-practices/

● Create your first contract

pragma solidity ^0.8.0;
// Minimal contract example
contract SimpleStorage {
 uint256 storedData; // State variable
}

● Install MetaMask

● Compile

● Compile and push «Deploy»

Solidity IDE

Check Deployment

● You have mined you first contract! 🎉

Gas: Ethereum’s Fuel
● Price that is paid for running a transaction or

a contract

● Unit of measuring computational work

● Every instruction needs to be paid for

● If you run out of gas, state is reverted, ETH
gone

● Structs
● struct Account {
 string addr;
 uint256 amount;
}

●

● Mapping (key-value pair, not iterable, but can be implemented),
think of Map<K,V> in Java or Dictionary<K,V> in C#

● mapping(address => uint256) public balances;
● balances[msg.sender] = 100; // Set balance of sender
● uint256 balance = balances[msg.sender]; // Get balance of sender
● delete(balances[msg.sender]);
●

Key Value
0x3f51... 100

0x17aa... 0

0x4eb2... 85

... ...

Solidity - http://solidity.readthedocs.io

https://github.com/ethereum/dapp-bin/blob/master/library/iterable_mapping.sol
http://solidity.readthedocs.io/

● «Standard» Functions: Can read and modify the state

uint256 counter;
function setCounter(uint256 _newValue) public {

counter = _newValue;
}

● View Functions: Do not modify the state (it’s free!)

uint256 counter;
function getCounter() public view returns (uint256) {

return counter;
}

● Pure Functions: Do not read from or modify the state.

function multiply(uint256 a, uint256 b) public pure returns (uint256) {
return a * b;

}

Solidity – Functions

● Internal Functions: Only callable internally

uint256 counter;
function setCounter(uint256 _newValue) internal {

counter = _newValue;
}

● External Functions: Only callable externally
Note: public and external differs in terms of gas usage

function setValues(uint256[20] _values) external {
 // do something
}

● Payable Functions: Receives plain Ether

function deposit() payable {
// Access msg.value to get amount of Ether

}

Solidity – Functions

● Often used Special Variables and Global Functions
● block.number (type of uint256): current block number

● gasleft() (returns uint256): remaining gas

● msg.sender (type of address): sender of the message

● msg.value (type of uint256): number of wei sent with the message

● block.timestamp (type of uint256): current block timestamp

Solidity – Basics

https://solidity.readthedocs.io/en/v0.5.12/units-and-global-variables.html

● Use require to test user inputs

if (msg.sender != owner) { throw; }

// Do something only the owner is allowed to

● behaves the same as:

require(msg.sender == owner);

// Do something only the owner is allowed to

//better: require(msg.sender == owner, "Unauthorized");

● OpenZeppelin: Ownable

● The use of revert(), assert(), and require() in Solidity
● Require, when errors can happen will not use all gas

● Assert, when errors should not happen, will use all gas

Solidity – Basics

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable.sol
https://media.consensys.net/when-to-use-revert-assert-and-require-in-solidity-61fb2c0e5a57

● Events are a way for smart contracts written in Solidity to log that something has occurred

● Interested observers, notably JavaScript front ends for decentralized apps, can watch for
events and react accordingly.

Solidity – Events/Notifications

contract EventsExample {
 event OwnerChanged(address _oldOwner, address _newOwner);

 function transfer(address _newOwner) public {
 require(owner == msg.sender, "Sender not authorized");
 emit OwnerChanged(owner, _newOwner);
 owner = _newOwner;
 }
}

Solidity – Events/Notifications

Numbers, Loops, Other contracts
● Before 0.7, SafeMath was essential, as overflow

was not checked.
● Many mistakes were made due to

overflow/underflow in smart contracts

● After Solidity 0.7, overflow throws an error
● uint256(10) – uint256(11) → underflow, throws

● if/else if/else
● As with any other language

● Basic logic if/else, for, while, break, continue,
return - no switch
for(uint256 x = 0; x < refundAddressList.length; x++) {

 refundAddressList[x].transfer(SOME_AMOUNT);

}

● External contracts
● Define interface e.g., ExternalContract

with function test()
● ExternalContract(addr).test();

● Transfer funds
● payable(this).transfer(1 ether);

● payable(this).call.value(1 ether);
— Check return value

— Gas is adjustable

Modifier / Inheritance
● Modifiers can be used in functions

● Modifiers vs. require

modifier test(address adr) {
 require(adr == _stored);
 _;
}
● _ will be replaced with actual code of the

function (...)
● function contribute() public
payable test(0x…) returns(uint256
id) {...}

● Opinion: use well known modifiers, but rest do
with require. Otherwise you need to search
conditions some place else

● Inheritance, e.g., use OpenZepplin contracts as
base

contract Owned {

 constructor() { owner = payable(msg.sender); }

 address payable owner;

}

contract Test is Owned {

 //virtual means, can be override

 function setAnyOwner() virtual public {

 owner = msg.sender;

 }

}

	Slide 1
	Solidity IDE
	Solidity - http://solidity.readthedocs.io
	Solidity IDE (2)
	Check Deployment
	Gas: Ethereum’s Fuel
	Solidity - http://solidity.readthedocs.io (2)
	Solidity – Functions
	Solidity – Functions (2)
	Solidity – Basics (2)
	Solidity – Basics (4)
	Solidity – Events/Notifications
	Solidity – Events/Notifications (2)
	Slide 14
	Slide 15

