
25.09.2022

Blockchain (BlCh)
Repetition DSy – part 2

Thomas Bocek

Blockchain2

Lecture 6

3

Authentication
• Authentication

• Single-factor authentication
- E.g. password

• Multi-factor authentication / 2FA
- E.g. password and software token, SMS (15.03.2021)

• Password rules
• Don’t use:

- The name of a pet, child, family member, or significant other

- Anniversary dates and birthdays

- Birthplace

- Name of a favorite holiday

- Something related to a favorite sports team

- The word "password“

• Don’t’ reuse passwords, use password managers

• Don’t enter passwords on unencrypted sites

• Password length:
password cracking with 5000$ in 2018 with hashcat
- Hashtype: WPA/WPA2: 1190.5 kH/s

• Combinations depend on PW complexity

Pw length Combinations Time

6 11m 9s

7 656m 9m

8 38b 8h

9 7 *1015 186y

10 4 *1017 11ky

11 2 *1019 665ky

12 1 *1021 38my

https://www.vice.com/en/article/y3g8wb/hacker-got-my-texts-16-dollars-sakari-netnumber
https://techland.time.com/2013/08/08/google-reveals-the-10-worst-password-ideas/?iid=biz-article-mostpop2
https://www.netmux.com/blog/how-to-build-a-password-cracking-rig
https://github.com/hashcat/hashcat
https://math.stackexchange.com/questions/739874/how-many-possible-combinations-in-8-character-password

4

Authentication
• JSON-based access tokens

- Header: {"alg" : "HS256"}

- Payload: {“sub" : "tom", "role" : "admin", “exp" :
1422779638}

• Signature (simple): keyed-hash message
- ~hash(base64(header)+base64(payload) + secret token)

• Client can store user_token in
- localStorage.setItem(“token", userToken);

• Example in golang with JWT
- Tutorial: here and here

• OAuth - protocol for authorization 3rd party
integration
• Grant access on other websites without giving them

the passwords

source

https://github.com/square/go-jose/tree/v2
https://jelinden.fi/blog/simple-golang-jwt-authorize/xFThAkKmR
https://www.sohamkamani.com/golang/2019-01-01-jwt-authentication/
https://en.wikipedia.org/wiki/OAuth
https://www.sohamkamani.com/golang/2019-01-01-jwt-authentication/

Access Token / Refresh Token
User OAuth server Webserver / App

Login

Access Token, valid 5min
Refresh Token, valid 6 month

Authorization: Bearer <Access Token>

2xx, Ok

Authorization: Bearer <Access Token>

4xx, Nok

Refresh Token

Access Token, valid 5min

Authorization: Bearer <Access Token>

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

6

Access Token / Refresh Token
• Access Token only short lifetime, e.g., 10min.

• If public key / secret is known, the content in the
token can be trusted, e.g., in the serivce

• Can have userId, role, etc.
- No need to query DB for those information, e.g.:

• Refresh Token longer lifetime, e.g., 6 month
• A refresh token is used to get a new access

token

• IAM / Auth server creates access tokens

• Only access token, with long lifetime
• If a user credential is revoked – how to inform

every service?

• Only refresh token
• Tightly coupled Service/Auth, every request to

Service, Auth needs to be involved for every
access

• Access + Refresh token
• If a user credential is revoked, user has max.

10min more to access service

• Auth only involved if access token is expired

• Authorization Code Flow with Proof Key for
Code Exchange (PKCE)

type TokenClaims struct {
MailFrom string `json:"mail_from,omitempty"`
MailTo string `json:"mail_to,omitempty"`
jwt.Claims

}

Distributed Systems7

Load Balancing
● What is load balancing

● Distribution of workloads across multiple computing
resources
— Workloads (requests)

— Computing resources (machines)

● Distributes client requests or network load efficiently across
multiple servers [link]
— E.g., service get popular, high load on service

→ horizontal scaling
● Why load balancing

● Ensures high availability and reliability by sending requests
only to servers that are online

● Provides the flexibility to add or subtract servers as demand
dictates Users

LB

S1

S2

S3

S4

Users

Service
Instance 1REST

Users

Load balancer

Service
Instance 1

Service
Instance 2

REST

https://www.nginx.com/resources/glossary/load-balancing

Distributed Systems8

Caddy
• Configuration: dynamic

• Static: Caddyfile

• One-liners:
• Quick, local file server: caddy file-server

• Reverse proxy: caddy reverse-proxy --from
example.com --to localhost:9000

• Open Source, software-based load balancer:
https://github.com/caddyserver/caddy
• “Caddy 2 is a powerful, enterprise-ready, open

source web server with automatic HTTPS
written in Go”

• L7 load balancer

• Reverse proxy

• Static file server

• HTTP/1.1, HTTP/2, and experimental HTTP/3

• Caddy on docker hub
:7070
reverse_proxy 127.0.0.1:8081 127.0.0.1:8080 {
 unhealthy_status 5xx
 fail_duration 5s
}

https://caddyserver.com/
https://github.com/caddyserver/caddy
https://caddyserver.com/docs/caddyfile/directives/reverse_proxy
https://hub.docker.com/_/caddy

Distributed Systems9

Dockerfile
● Example: caddy as LB, go as Service

● docker-compose up --scale services=5

#docker-compose.yml
version: '3'
services:
 services:
 build: .
 ports:
 - "8080-8085:8080"
 lb:
 image: caddy
 ports:
 - "7070:7070"
 volumes:
 - ./Caddyfile:/etc/caddy/Caddyfile

#Caddyfile
:7070
reverse_proxy * {
 to http://dsy-services-1:8080
 to http://dsy-services-2:8080
 to http://dsy-services-3:8080
 to http://dsy-services-4:8080
 to http://dsy-services-5:8080

 lb_policy round_robin
 lb_try_duration 1s
 lb_try_interval 100ms
 fail_duration 10s
 unhealthy_latency 1s
}

Distributed Systems10

CORS
● CORS = Cross-Origin Resource Sharing

● For security reasons, browsers restrict cross-origin
HTTP requests initiated from scripts (among others)

● Mechanism to instruct browsers that runs a resource
from origin A to run resources from origin B

● Solution
● Use reverse proxy with builtin webserver, e.g., nginx,

or user reverse proxy with external webserver.

→ The client only sees the same origin for the API
and the frontend assets

● Access-Control-Allow-Origin: https://foo.example

→ For dev: Access-Control-Allow-Origin: *

● w.Header().Set("Access-Control-Allow-Origin",
"*")

● Reverse proxy

Users

LB
 Backend service 1

Backend service 2

Frontend

Users

LB
 / R

P

Backend service 1

Backend service 2

Frontend

CORS

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://foo.example/

Blockchain11

Lecture 7

Distributed Systems12

Protocols
● Custom encoding/decoding

● You control every aspect

● You send more time on it

● Little-endian / Big-endian
● sequential order where bytes are converted

into numbers

● Networking, e.g. TCP headers:
Big-endian

● Most CPUs e.g., x86:
Little-endian, RISC-V: Bi-endianness

[source]

https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Endianness

Distributed Systems13

JSON example
● JSON + REST/HTTP

● Human-readable text to transmit data

● Often used for web apps

● 187 bytes

● Parsing overhead, JSON slower than binary
protocol - benchmarks

func main() {
 fmt.Println("Connecting...")
 req, _ := http.NewRequest("POST", "http://localhost:7000",
 strings.NewReader(`{"code": 5,"message": "Anybody there?"}`))
 req.Header.Set("Content-Type", "application/json")
 client := &http.Client{}
 resp, err := client.Do(req)
 if err != nil {
 panic(err)
 }
 defer resp.Body.Close()
 fmt.Printf("wrote request")
}

[
 {
 "id": "bitcoin",
 "name": "Bitcoin",
 "symbol": "BTC",
 "rank": "1",
 "price_usd": "9324.08",
 "price_btc": "1.0",
 "24h_volume_usd": "9039300000.0",
 "market_cap_usd": "158560288125",
 "available_supply": "17005462.0",
 "total_supply": "17005462.0",
 "max_supply": "21000000.0",
 "percent_change_1h": "0.46",
 "percent_change_24h": "-0.27",
 "percent_change_7d": "4.5",
 "last_updated": "1525011874“
 }, ...
]

https://github.com/erickt/rust-serialization-benchmarks

Distributed Systems14

Application Protocol: HTTP
● HTTP (HyperText Transfer Protocol):

foundation of data communication for www
● Started in 1989 by Tim Berners-Lee

● HTTP/1.1 published in 1997

● HTTP/2 published in 2015
— More efficient, header compression, multiplexing

● HTTP/3 wip (April 2022: HTTP/3 protocol is an
Internet Draft – not yet final)

● Request / response (resource)
● HTTP resources identified by URL

● https://dsl.hsr.ch/design/hsr_logo.svg

● Text-based protocol

● Browser sends a bit more…

openssl s_client -connect dsl.hsr.ch:443
… TLS handshake …
GET /

http://tbocek:password@dsl.hsr.ch:443/lect/fs21?id=1234&lang=de#topj

Scheme User info Host Port Path Query Fragment

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

Distributed Systems15

Protocols Bencoding and Others
● Benconding

● Integers: i42e, Byte string: 4:test, list: l4:testi42ee

● Map/dictionary: d4:test3:hsr3:tomi42ee

● Use: BitTorrent
● UBJSON
● Cap’n Proto , FlatBuffers

● Do not serialize, just copy, little-endian

● Apache Arrow
● Do not serialize, copy, and optimally layout for memory

access

● … and many others
● Benchmarks, benchmarks, …

https://en.wikipedia.org/wiki/Bencode
https://en.wikipedia.org/wiki/UBJSON
https://capnproto.org/
https://google.github.io/flatbuffers/
https://arrow.apache.org/
https://en.wikipedia.org/wiki/Comparison_of_data_serialization_formats
https://google.github.io/flatbuffers/flatbuffers_benchmarks.html
https://codeburst.io/json-vs-protocol-buffers-vs-flatbuffers-a4247f8bda6f

Blockchain16

Lecture 8

Distributed Systems

● Definition: Consensus decision-making is a
group decision-making process in which group
members develop, and agree to support a
decision in the best interest of the whole.

● A Byzantine fault is an arbitrary fault that occurs
during the execution of an algorithm by a
distributed system
● Not only crash, but lie or even collude to reach an

advantage

● “Controlled” Distributed Systems: your own
nodes, your control, no collusion

● Find consensus
● Paxos, Raft, vDHT, Zookeeper

● Often: consensus defines leader
● Leader creates block

● Leader adds data

● Leader creates version

● How to find a leader?

source

Arbitrary faults, but no collusion

Consensus

https://en.wikipedia.org/wiki/Byzantine_fault
https://www.youtube.com/watch?v=s8Wbt0b8bwY

Distributed Systems

Paxos History
● Leslie Lamport discovered the Paxos

algorithm in late 1980s
● Attempt to prove that there was no such

algorithm which can tolerate the failure of any
number of its processes

● Until he realized that he created working
protocol

● Wrote paper and submitted it to Transactions on Computer
Systems (TOCS) in 1990
● Reviewer: was mildly interesting, but needs significant

improvement

● Leslie Lamport: “so I did nothing with the paper”

● People started to using Paxos to solve problems in
distributed systems

● Resubmitted in 1998 to TOCS
● Accepted without any major changes

● Paxos paper won an ACM SIGOPS Hall of Fame Award in
2012

● Received Turing award in 2013 , also due to Paxos
● “Turing Award is generally recognized as the highest distinction

in computer science and the "Nobel Prize of computing”“ [link]

source

http://lamport.azurewebsites.net/pubs/pubs.html#lamport-paxos
http://lamport.azurewebsites.net/pubs/pubs.html#lamport-paxos
http://lamport.azurewebsites.net/pubs/pubs.html#lamport-paxos
https://amturing.acm.org/award_winners/lamport_1205376.cfm
https://en.wikipedia.org/wiki/Turing_Award
http://www.lamport.org/

Distributed Systems

Raft (multi paxos)
● “this makes Raft more understandable than

Paxos and also provides a better foundation
for building practical systems.” [link]

● RAFT: Reliable, Replicated, Redundant, And
Fault-Tolerant

● Follower, Candidate, Leader [link]
● Raft implements leadership election,

● Once a leader has been elected, all decision-
making within the protocol will then be driven
only by the leader

● Only one leader can exist at a single time

● Each follower has a timeout (typically
between 150 and 300 ms) in which it
expects the heartbeat from the leader.
● The system is only available when a leader has

been elected and is alive

● Otherwise, a new leader will be elected and the
system will remain unavailable for the duration
of the vote

● Starts election by increasing term counter,
voting for itself, and sending a message to all
other servers requesting their vote

● If a higher term is received, become follower, if
not, leader

https://raft.github.io/raft.pdf
https://en.wikipedia.org/wiki/Raft_(computer_science)
http://thesecretlivesofdata.com/raft/

Distributed Systems

Consistency
● Consistency in DHTs – vDHT, similarities to Paxos

● Number = versions, for doing updates

● Simplified roles (peer)

● No leader election, works well with churn (not heavy churn)

● CoW, software transactional memory (STM) → for consistent updates. Works for light churn

https://en.wikipedia.org/wiki/Copy-on-write
https://en.wikipedia.org/wiki/Software_transactional_memory

Blockchain21

Lecture 9

Distributed Systems

CRDT
● (Paxos, why take over larger number?)

● “acceptors made a promise that no other proposal with a
smaller number can make it to consensus” → If acceptor
accepted, but its not majority → could stall forever, thus take
over large number (link, link)

● L08S10: vDHT
● A way how to bring consistency to DHTs

● ~CRDT (operation-based CRDTs)

● Conflict-free replicated data type (CRDT)

● ~git but with no merge conflicts

● CRDT must be
● Commutative x ● y = y ● x

● Associative (x ● y) ● z = x ● (y ● z)

● Idempotent x ● x = x

● CRDT Counter (G-Counter)
● For each machine 1 array position for counter

● Merge: max of each counter (A:6 B:3 C:9)
— Old data A:6 B:2 C:9 merge-max / A:5 B:3 C:2

A:6 B:3 C:9

— Commutative, associative, idempotent

A:6 B:0 C:0

A

A:0 B:3 C:0

B

A:6 B:0 C:0

A

A:0 B:0 C:9

C

https://martinfowler.com/articles/patterns-of-distributed-systems/paxos.html
https://people.cs.rutgers.edu/~pxk/417/notes/paxos.html
https://en.wikipedia.org/wiki/Conflict-free_replicated_data_type
https://www.youtube.com/watch?v=PQzNW8uQ_Y4

Distributed Systems

Docker Swarm
● Use docker --context to run/maintain containers on

other machines
● Does not work for docker-compose, could be used with

Ansible… “Ansible is also great for bootstrapping Docker
itself” [source]

● Docker Swarm
• Deploy with docker-compose.yml (deploy:)

• Built into docker

- docker swarm – manage swarm

- docker node – manage nodes

• Scheduler is responsible for placement of containers to
nodes

● Can use the same files, easy to setup?
— Azure, Google cloud, Amazon

● Kubernetes vs. Docker Swarm

● “Docker Swarm has already lost the battle
against Kubernetes for supremacy in the
container orchestration space” [link]

● “Kubernetes supports higher demands with
more complexity while Docker Swarm offers
a simple solution that is quick to get started
with.” [link]

https://nickjanetakis.com/blog/docker-and-ansible-solve-2-different-problems-and-they-can-be-used-together
https://codeblog.dotsandbrackets.com/docker-stack/
https://dockerswarm.rocks/
https://ddewaele.github.io/azure-docker/
https://medium.com/google-cloud/docker-swarm-on-google-cloud-platform-c9925bd7863c
https://stelligent.com/2017/02/21/docker-swarm-mode-on-aws/
https://sensu.io/blog/kubernetes-vs-docker-swarm
https://ikarus.sg/docker-to-swarm/
https://thenewstack.io/kubernetes-vs-docker-swarm-whats-the-difference/

Kubernetes
● Kubernetes, K8s

● Container orchestration (docker)
— Automated deployment, scaling

● Started by Google, now with CNCF

● Kubernetes-based PaaS
● Google, Amazon, Azure (book), Digital Ocean,

…
— Difficult pricing schemes

● 1.0 released in 2015

● Package manager Helm released in
2016 (convert docker-compose)

● Why Kubernetes?
● Containers can crash, machine that runs

container can crash (e.g., out of memory)

● Development: run on one machine,
deployment how and where to distribute?

● Kubernetes manages the lifecycle of
containers

https://en.wikipedia.org/wiki/Kubernetes
https://en.wikipedia.org/wiki/Cloud_Native_Computing_Foundation
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/eks/?whats-new-cards.sort-by=item.additionalFields.postDateTime&whats-new-cards.sort-order=desc&eks-blogs.sort-by=item.additionalFields.createdDate&eks-blogs.sort-order=desc
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/resources/kubernetes-collection-host/
https://www.digitalocean.com/products/kubernetes/
https://geekflare.com/managed-kubernetes-platform/
https://georgepaw.medium.com/how-to-run-the-cheapest-kubernetes-cluster-at-1-per-day-9287abb90cee
https://helm.sh/docs/topics/charts/
https://kompose.io/user-guide/#alternative-conversions

	Slide 1
	Slide 2
	Authentication
	Authentication (8)
	Access Token / Refresh Token
	Access Token / Refresh Token (2)
	Load balancing
	Caddy
	Dockerfile
	CORS
	Slide 11
	Protocols (2)
	JSON example
	Application Protocol: HTTP
	Protocols Bencoding and Others
	Slide 16
	Consensus (last weeks lecture)
	Paxos History
	Raft (multi paxos)
	Consistency_clipboard3
	Slide 21
	Slide 22
	Slide 23
	Kubernetes

