OST

Eastern Switzerland
University of Applied Sciences

Blockchain (BICh)

Repetition DSy - part 2

Thomas Bocek
25.09.2022

Lecture 6

2 | Blockchain O OST

Authentication

* Authentication

 Single-factor authentication

E.g. password

Multi-factor authentication / 2FA

E.g. password and software token, SMS (15.03.2021)

* Password rules

Don’t use:

The name of a pet, child, family member, or significant other
Anniversary dates and birthdays

Birthplace

Name of a favorite holiday

Something related to a favorite sports team

The word "password*

Don’t’ reuse passwords, use password managers

* Don’t enter passwords on unencrypted sites

« Password length:
password cracking with 5000% in 2018 with hashcat

- Hashtype: WPA/WPAZ2: 1190.5 kH/s

6
r
8
9
10
11
12

11m
656m
38b

7 *10%
4 *10%7
2 *10%°
1 *10%

9s
9m
8h
186y
11ky
665ky

38my

* Combinations depend on PW complexity

OOST

https://www.vice.com/en/article/y3g8wb/hacker-got-my-texts-16-dollars-sakari-netnumber
https://techland.time.com/2013/08/08/google-reveals-the-10-worst-password-ideas/?iid=biz-article-mostpop2
https://www.netmux.com/blog/how-to-build-a-password-cracking-rig
https://github.com/hashcat/hashcat
https://math.stackexchange.com/questions/739874/how-many-possible-combinations-in-8-character-password

Header Payload

[malg™:="HSZ36™, {"username" :"userl™,
"exp™:15473740B2}

"Lyp™ : " JWT" }
« JSON-based access tokens Base64 Base64
encode encode
- Header: {"alg" : "HS256"}
- Payload: {*sub" : "tom", "role" : "admin", “exp" :
1422779638}
° Slgnature (Simple): keyed_haSh message |eydhbGoi0iJIUzIINIi IsInRScCI6IkpXVC IS eyJlc2VybmFtESI6InVeEXIxIiwiEXhw] joxNTQ30TcOMDgy £0
- ~hash(base64(header)+base64(payload) + secret token)
« Client can store user_token in g s
- localStorage.setltem(“token", userToken); ey o
|~ my secret key
« Example in golang with JWT i §
- Tutorial: here and here : |
"
* OAuth - protocol for authorization 3 party §
integration B
« Grant access on other websites without giving them
the passwords
2Ye5 wlz3zpD4dSGdRp3s938ZipCNQOqmsHREBIvioOx54 source

(signature)

https://github.com/square/go-jose/tree/v2
https://jelinden.fi/blog/simple-golang-jwt-authorize/xFThAkKmR
https://www.sohamkamani.com/golang/2019-01-01-jwt-authentication/
https://en.wikipedia.org/wiki/OAuth
https://www.sohamkamani.com/golang/2019-01-01-jwt-authentication/

Access Token | Refresh Token

Webserver / App

Login

A

Access Token, valid 5min
Refresh Token, valid 6 month

Authorization: Bearer <Access Token>

A 4

2xx, Ok

Authorization: Bearer <Access Token>

A

4xx, Nok

Refresh Token

A

Access Token, valid 5min

Authorization: Bearer <Access Token>

OOST

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Access Token | Refresh Token

* Access Token only short lifetime, e.g., 10min.

* If public key / secret is known, the content in the

token can be trusted, e.g., in the serivce

« Can have userld, role, etc.

- No need to query DB for those information, e.g.:

type TokenClaims struct {
MailFrom string “json:"mail_from,omitempty""’
MailTo string “json:"mail_to,omitempty"’
jwt.Claims

}

* Refresh Token longer lifetime, e.g., 6 month

* Arefresh token is used to get a new access
token

* |AM / Auth server creates access tokens

Only access token, with long lifetime

* |f a user credential is revoked — how to inform

every service?

Only refresh token

* Tightly coupled Service/Auth, every request to
Service, Auth needs to be involved for every

aCCess

Access + Refresh token

* If a user credential is revoked, user has max.

10min more to access service

« Auth only involved if access token is expired

Authorization Code Flow with Proof Key for

Code Exchange (PKCE)

OOST

7

Load Balancing

* What is load balancing

Distribution of workloads across multiple computing
resources

— Workloads (requests)

— Computing resources (machines)

Distributes client requests or network load efficiently across
multiple servers [link]

- E.g., service get popular, high load on service
- horizontal scaling

* Why load balancing

Ensures high availability and reliability by sending requests
only to servers that are online

Provides the flexibility to add or subtract servers as demand
dictates

Distributed Systems

Service
RreS! Instance 1

Service
Instance 1
Service
Instance 2

OOST

Jaduefeq peoT

Users

https://www.nginx.com/resources/glossary/load-balancing

Caddy

* Configuration: dynamic

- Static: Caddyfile

* One-liners:

* Quick, local file server: caddy file-server

* Reverse proxy: caddy reverse-proxy --from
example.com --to localhost:9000

2} Caddy

Open Source, software-based load balancer:
https://github.com/caddyserver/caddy

17070

reverse_proxy 127.0.0.1:8081 127.0.0.1:8080 {
unhealthy_status 5xx
fail_duration 5s

}

8 | Distributed Systems

- “Caddy 2 is a powerful, enterprise-ready, open
source web server with automatic HTTPS
written in Go”

L7 load balancer

* Reverse proxy

* Static file server

« HTTP/1.1, HTTP/2, and experimental HTTP/3
« Caddy on docker hub

OOST

https://caddyserver.com/
https://github.com/caddyserver/caddy
https://caddyserver.com/docs/caddyfile/directives/reverse_proxy
https://hub.docker.com/_/caddy

Dockerfile
° Example: caddy as LB, go as Service

* docker-compose up --scale services=5

#Caddyfile
17070
reverse_proxy * {
#docker -compose.yml to http://dsy-services-1:8080
version: '3’ to http://dsy-services-2:8080
services: to http://dsy-services-3:8080
services: to http://dsy-services-4:8080
build: . to http://dsy-services-5:8080
ports:
- "8080-8085:8080" 1b_policy round_robin
1b: 1b_try_duration 1s
image: caddy 1b_try_interval 100ms
ports: fail_duration 10s
- "7070:7070" unhealthy_latency 1s
volumes: }

- ./Caddyfile:/etc/caddy/Caddyfile

9 | Distributed Systems O OST

CORS

* CORS = Cross-Origin Resource Sharing - w.Header().Set("Access-Control-Allow-Origin®,

; . . . g
For security reasons, browsers restrict Cross-origin)

HTTP requests initiated from scripts (among others) , poyarse proxy

Mechanism to instruct browsers that runs a resource
from origin A to run resources from origin B

Bez!‘end service 1

* Solution

Use reverse proxy with builtin webserver, e.g., nginx,

Or user reverse proxy with external webserver.

— The client only sees the same origin for the API

and the frontend assets Backend service 1

Access-Control-Allow-Origin: https://foo.example

Backend service 2

— For dev: Access-Control-Allow-Origin: *
Frontend

10 | Distributed Systems O OST

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://foo.example/

Lecture 7

11 | Blockchain O OS T

12

Protocols

Custom encoding/decoding
* You control every aspect

* You send more time on it

Little-endian / Big-endian

* sequential order where bytes are converted
into numbers

Networking, e.g. TCP headers:
Big-endian

Most CPUs e.g., x86:
Little-endian, RISC-V: Bi-endianness

Distributed Systems

public static boolean decodeHeader(final ByteBuf buffer, final InetSocketAddress recipientSocket,

final InetSocketAddress senderSocket, fTinal Message message) {
LOG.debug("Decode message. Recipient: {}, Sender:{}.", recipientSocket, senderSocket),
final int versionAndType = buffer.readInt();
message.version(versionAndType === 47,
message. type(Type.values()[(versionAndType & Utils.MASKE_BF)]);
message. protocolType(ProtocolType.values() [versionAndType === 30]);
message.messageld{buffer.readInt());
final int command = buffer.readUnsignedByte(),
message.command((byte) command),
final Numberi16@ recipientID = NumberiG0.decode(buffer),

Afwe only get the id for the recipient, the rest we already know
final PeerAddress recipient = PeerAddress.builder().peerId{recipientID).build();
message. recipient(recipient);

final int contentTypes = buffer.readInt(),;
message. hasContent(contentTypes = 07,
messace. contentTypes(decodeContentTypes(contentTypes, messagel);

32-hit integer 32-bit integer
Memory | OAOBOCOD| | 0AOBOCOD Memory

s \—> a+l: Eg

= q+2:|0B

a+l: 0B --l:—J
a+2: 0C

a+3 QD | —-e—
. Big-endian

—— = g+3:|0A
Little-endian i

[source] OST

https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Endianness

JSON example

° JSON + REST/HTTP * Parsing overhead, JSON slower than binary
. rotocol - benchmarks
* Human-readable text to transmit data P
[
- Often used for web apps { _ o
"id": "bitcoin",
® "name": "Bitcoin",
187 bytes "symbol": "BTC",
Ilrankll: |l1||,
func main() { "price_usd": "9324.08",
fmt.Println("Connecting...") "price_btc": "1.0",
req, _ := http.NewRequest("POST", "http://10C81h0$t:7000", Il24h Vglume usdll. ||9039300000 0"
strings.NewReader({"code": 5,"message": "Anybody there?"}')) " - - 0w !
req.Header.Set("Content-Type", "application/json") "marl_<et_cap_usd '" 1:‘?8560288125"’
client := &http.Client{} available_supply": "17005462.0",
resp, err := client.Do(req) "total_supply": "17005462.0",
if err != nil { "max_supply": "21000000.0",
}PGML(GT> "percent_change_1h": "0.46",
"percent_change_24h": "-0.27",
defer resp.Body.Close() " weoon "
fmt.Printf("wrote request") percent_change_7d": "4.5",
} "last_updated": "1525011874“
Iy
]

13 | Distributed Systems O OST

https://github.com/erickt/rust-serialization-benchmarks

Application Protocol: HTTP

* HTTP (HyperText Transfer Protocol):
foundation of data communication for www

* Started in 1989 by Tim Berners-Lee
* HTTP/1.1 published in 1997
HTTP/2 published in 2015

— More efficient, header compression, multiplexing

HTTP/3 wip (April 2022: HTTP/3 protocol is an
Internet Draft — not yet final)

* Request / response (resource)

* HTTP resources identified by URL

https://dsl.hsr.ch/design/hsr_logo.svg

Scheme User info Host
i]

||

Port

* Text-based protocol

openssl s _client -connect dsl.hsr.ch:443
.. TLS handshake ..
GET /

* Browser sends a bit more...

» Request Headers (359 B)

Host: dsl.hsr.ch

User-Agent: Mozilla/s5.@ (X¥11; Linux x86_64; rv:73.08) Gecko /20108101 Firefox/73.8
Accept: text/html,applicationsxhtml+xml, application/xml;q=08.9, image/webp,*/*;q=0.8
Accept-Language: en-US,en;g=0.5

Accept-Encoding: gzip, deflate, br

DNT: 1

connection: keep-alive

Upgrade -Insecure-Regquests: 1

cache-control: max-age=9

TE: Trailers

Path Query Fragment

\ \ I
V4 Y) ' OOST

ID'St”b”tec’ﬁ%“fﬁemf/tbocek password@dsl.hsr.ch:443/lect/fs21?1d=1234&lang=de#top]j

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

Protocols Bencoding and Others

® Bencond I ng ubuntu-18.04-desktop-amd64.iso.torrent - GHex
File Edit View Windows Help

* Integers: i42e, Byte string: 4:test, list: 14:testi42ee

0OPOOOOR64 38 3A 61 6E BE 6F 7! 65) 8 74 d8:announce39:ht
000001074 70 3A 2F 2F 74 6F 5 6E 74 ; 5 tp://torrent.ubu
. Map/d|ct|onary; d4:test3:hsr3:tomi42ee 000000206E 74 75 6F 6D) 36 39 ntu.com:6969/ann
POPOEO3BEF 75 BE = el 6E : 5 ouncel3:announce
. pooepe4e2D 69 4 6C 6C) 68 74 74 -1istl1139:http:/
* Use: BitTorrent 000000502F 74 6F 65 6E 74 5 62 7 74 7! /torrent.ubuntu.
0OBOEB6063 6D 3983635 6E E com:6969/announc
0000007065 65 6C 34 34 3A 68 74 74 3A) eeld44:http://ipv
e UB\]SON 0PEOEO8A36 74 65 4 75 : 74 75 6.torrent.ubuntu
000O0B902E 6F 29) 61 TE .com:6969/announ
0OOOOOABE3 65 65 6F 63 65 -) ceee7:comment29:
°]
Ca‘p n PrOtO ' FlatBUﬂ:erS elofolololol =101 75 4 75 20 43 44 72 6! - Ubuntu CD releas
elofoleloloTelof<1) 2E 7! 5 BE 74 7! 63 es.ubuntu.comi3:
. DO not Serlallze, Just Copy, ||tt|e_end|an 0EEOOODO63 65 £) 6F 4 61 74 6°) 5 creation daFEll5
000OROER32 34 37 30 38 65 34 3A 68 4 24776308e4:infod
00BPOBFO36 6C B¢ 74 6¢) 39 8 34 6:1lengthil921843
o Apache Arrow 0000010032 30 30 65 34 6E 5 33 : 5 200e4:name30:ubu
0OEEO1106E 74 75 8 2E - 64 B¢ - ntu-18.04-deskto
T . 000E012070 61 4 34) 6F) p-amd64.isol12:pi
* Do not serialize, copy, and optimally layout for memory 0000013065 63 65 5 6E 67 74 68 69 3t : 8 ece lengthi52428
access Signed 8 bit: 100 Signed 32 bit: 1631205476 Hexadecimal: 64
° o and many OtherS Unsigned 8 bit: 100 Unsigned 32 bit: 1631205476 Octal: 144
Signed 16 bit: 14436 Signed 64 bit: 1631205476 Binary: 01100100
°
BenChmarkS, benChmarkS1 Unsigned 16 bit: 14436 Unsigned 64 bit: 1631205476 Stream Length: &

Float 32 bit: 2.146974e+20 Float 64 bit: 4.719431e+257

+ Show little endian decoding Show unsigned and float as hexadecimal

15 | Distributed Systems

Offset: Ox0

https://en.wikipedia.org/wiki/Bencode
https://en.wikipedia.org/wiki/UBJSON
https://capnproto.org/
https://google.github.io/flatbuffers/
https://arrow.apache.org/
https://en.wikipedia.org/wiki/Comparison_of_data_serialization_formats
https://google.github.io/flatbuffers/flatbuffers_benchmarks.html
https://codeburst.io/json-vs-protocol-buffers-vs-flatbuffers-a4247f8bda6f

Lecture 8

16 | Blockchain O OS T

consensus

* Definition: Consensus decision-making is a
group decision-making process in which group
members develop, and agree to support a
decision in the best interest of the whole.

* A Byzantine fault is an arbitrary fault that occurs
during the execution of an algorithm by a
distributed system

Not only crash, but lie or even collude to reach an
advantage

e “Controlled” Distributed Systems: your own
nodes, your control, no collusion

* Find consensus

Paxos, Raft, vDHT, Zookeeper

Distributed Systems

* Often: consensus defines leader
- Leader creates block
- Leader adds data

« Leader creates version

e How to find a leader?

Arbitraifaults, but N0

WENT THROUGH.. (TO
W, ?
~

SYNCHRONISED ATTACK
IS THE ONLY CHANGE TO WIN

source

UOST

https://en.wikipedia.org/wiki/Byzantine_fault
https://www.youtube.com/watch?v=s8Wbt0b8bwY

Paxos History

e | eslie Lamport discovered the Paxos * Wrote paper and submitted it to Transactions on Computer

algorithm in late 1980s Systems (TOCS) in 1990

Reviewer: was mildly interesting, but needs significant
- Attempt to prove that there was no such improvement

algorithm which can tolerate the failure of any . Leslie Lamport: “so | did nothing with the paper”

number of its processes * People started to using Paxos to solve problems in

+ Until he realized that he created working distributed systems
protocol * Resubmitted in 1998 to TOCS

« Accepted without any major changes

e Paxos paper won an ACM SIGOPS Hall of Fame Award in
2012

* Received Turing award in 2013, also due to Paxos

« “Turing Award is generally recognized as the highest distinction
in computer science and the "Nobel Prize of computing™ [link]

Distribute@ Q{tbrRs f&}zﬁf-‘ﬂaﬁ O OST

http://lamport.azurewebsites.net/pubs/pubs.html#lamport-paxos
http://lamport.azurewebsites.net/pubs/pubs.html#lamport-paxos
http://lamport.azurewebsites.net/pubs/pubs.html#lamport-paxos
https://amturing.acm.org/award_winners/lamport_1205376.cfm
https://en.wikipedia.org/wiki/Turing_Award
http://www.lamport.org/

Raft (multi paxos)

* “this makes Raft more understandable than
Paxos and also provides a better foundation
for building practical systems.” [link]

* Each follower has a timeout (typically
between 150 and 300 ms) in which it
expects the heartbeat from the leader.

« The system is only available when a leader has
been elected and is alive

 RAFT: Reliable, Replicated, Redundant, And
Fault-Tolerant

Otherwise, a new leader will be elected and the
system will remain unavailable for the duration

* Follower, Candidate, Leader [link]

Raft implements leadership election,

« Once a leader has been elected, all decision-

making within the protocol will then be driven
only by the leader

- Only one leader can exist at a single time

Distributed Systems

of the vote

Starts election by increasing term counter,
voting for itself, and sending a message to all
other servers requesting their vote

If a higher term is received, become follower, if

not, leader
CXY Oost

https://raft.github.io/raft.pdf
https://en.wikipedia.org/wiki/Raft_(computer_science)
http://thesecretlivesofdata.com/raft/

Consistency

* Consistency in DHTs — vDHT, similarities to Paxos
Number = versions, for doing updates
Simplified roles (peer)

No leader election, works well with churn (not heavy churn)

* CoW, software transactional memory (STM) - for consistent updates. Works for light churn

Common Replica Node Replica Replica
Replica ' i, U bset B Replica A, SUbsSet B

k‘é‘\“\ Subset’ A/“;_r‘ __H“b_t “ i
s

Node C1 ' | Node C1 ' |
Distributed Sy: Node C2 Node C2 O OST

https://en.wikipedia.org/wiki/Copy-on-write
https://en.wikipedia.org/wiki/Software_transactional_memory

Lecture 9

21 | Blockchain O OST

Common Rgplica Node Replica Replica
Replica 3 Replica Subset B

B Subset B
Subset A '6\ G \ Subset A

CRDT

* (Paxos, why take over larger number?)

“acceptors made a promise that no other proposal with a e et e —Client

. " Node C2 Node C2
smaller number can make it to consensus” — If acceptor % o
accepted, but its not majority — could stall forever, thus take

over large number (link, link)

* L08S10: vDHT CRDT Counter (G-Counter)

* A way how to bring consistency to DHTs - For each machine 1 array position for counter

A B C

~CRDT (operation-based CRDTS)
Conflict-free replicated data type (CRDT)
~git but with no merge conflicts

e CRDT must be

Commutative x e y =y @ X - Merge: max of each counter (A:6 B:3 C:9)
+ Associative (x ey)ez=xe (y ® 2) — Old data A:6 B:2 C:9 merge-max / A:5 B:3 C:2
A6 B:3C:9

ldempotent x ® X = X
— Commutative, associative, idempotent

Distributed Systems O OST

https://martinfowler.com/articles/patterns-of-distributed-systems/paxos.html
https://people.cs.rutgers.edu/~pxk/417/notes/paxos.html
https://en.wikipedia.org/wiki/Conflict-free_replicated_data_type
https://www.youtube.com/watch?v=PQzNW8uQ_Y4

Docker Swarm

* Use docker --context to run/maintain containers on
other machines

Does not work for docker-compose, could be used with
Ansible... “Ansible is also great for bootstrapping Docker
itself” [source]

* Docker Swarm
Deploy with docker-compose.yml (deploy:)
Built into docker
- docker swarm — manage swarm
- docker node — manage nodes

« Scheduler is responsible for placement of containers to
nodes

Can use the same files, easy to setup?

- Azure, Google cloud, Amazon

Distributed Systems

Kubernetes vs. Docker Swarm

“Docker Swarm has already lost the battle
against Kubernetes for supremacy in the
container orchestration space” [link]

“Kubernetes supports higher demands with

more complexity while Docker Swarm offers
a simple solution that is quick to get started

with.” [link]

OOST

https://nickjanetakis.com/blog/docker-and-ansible-solve-2-different-problems-and-they-can-be-used-together
https://codeblog.dotsandbrackets.com/docker-stack/
https://dockerswarm.rocks/
https://ddewaele.github.io/azure-docker/
https://medium.com/google-cloud/docker-swarm-on-google-cloud-platform-c9925bd7863c
https://stelligent.com/2017/02/21/docker-swarm-mode-on-aws/
https://sensu.io/blog/kubernetes-vs-docker-swarm
https://ikarus.sg/docker-to-swarm/
https://thenewstack.io/kubernetes-vs-docker-swarm-whats-the-difference/

Kubernetes

* Kubernetes, K8s 1.0 released in 2015
Container orchestration (docker) * Package manager Helm released in
— Automated deployment, scaling 2016 (convert docker-compose)
Started by Google, now with CNCF * Why Kubernetes?
e Kubernetes-based PaaS * Containers can crash, machine that runs

container can crash (e.g., out of memory)
* Google, Amazon, Azure (book), Digital Ocean,

Development: run on one machine,

deployment how and where to distribute?
— Difficult pricing schemes

Kubernetes manages the lifecycle of
containers

OOST

https://en.wikipedia.org/wiki/Kubernetes
https://en.wikipedia.org/wiki/Cloud_Native_Computing_Foundation
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/eks/?whats-new-cards.sort-by=item.additionalFields.postDateTime&whats-new-cards.sort-order=desc&eks-blogs.sort-by=item.additionalFields.createdDate&eks-blogs.sort-order=desc
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/resources/kubernetes-collection-host/
https://www.digitalocean.com/products/kubernetes/
https://geekflare.com/managed-kubernetes-platform/
https://georgepaw.medium.com/how-to-run-the-cheapest-kubernetes-cluster-at-1-per-day-9287abb90cee
https://helm.sh/docs/topics/charts/
https://kompose.io/user-guide/#alternative-conversions

	Slide 1
	Slide 2
	Authentication
	Authentication (8)
	Access Token / Refresh Token
	Access Token / Refresh Token (2)
	Load balancing
	Caddy
	Dockerfile
	CORS
	Slide 11
	Protocols (2)
	JSON example
	Application Protocol: HTTP
	Protocols Bencoding and Others
	Slide 16
	Consensus (last weeks lecture)
	Paxos History
	Raft (multi paxos)
	Consistency_clipboard3
	Slide 21
	Slide 22
	Slide 23
	Kubernetes

