
18.09.2022

Blockchain (BlCh)
Repetition DSy – part 1

Thomas Bocek

Blockchain2

Lecture 1

Blockchain3

Distributed Systems Motivation
● Why Distributed Systems

● Scaling

● Location

● Fault-tolerance (bitflips, outages)

ht
tp

s:
//w

w
w

.in
ka

nd
sw

itc
h.

co
m

/lo
ca

l-f
irs

t.h
tm

l

Submarine Cable Map

ho
riz

on
ta

l

ve
rti

ca
l

https://en.wikipedia.org/wiki/Moore%27s_law
https://blogs.oracle.com/linux/attack-of-the-cosmic-rays-v2
https://subtelforum.com/category/cable-faults-maintenance/
https://www.inkandswitch.com/local-first.html
https://www.submarinecablemap.com/

Blockchain4

Lecture 2

Blockchain5

Distributed Systems Categorization
“Controlled” Distributed Systems

● 1 responsible organization

● Low churn

● Examples:
● Amazon DynamoDB

● Client/server

● “Secure environment”

● High availability

● Can be homogeneous / heterogeneous

“Fully” Decentralized Systems

● N responsible organizations

● High churn

● Examples:
● BitTorrent

● Blockchain

● “Hostile environment”

● Unpredictable availability

● Is heterogeneous

Blockchain6

Distributed Systems Categorization
“Controlled” Distributed Systems

● Mechanisms that work well:
● Consistent hashing (DynamoDB, Cassandra)

● Master nodes, central coordinator

● Network is under control or client/server →
no NAT issues

“Fully” Decentralized Systems

● Mechanisms that work well:
● Consistent hashing (DHTs)

● Flooding/broadcasting - Bitcoin

● NAT and direct connectivity huge problem

Blockchain7

Distributed Systems Categorization
“Controlled” Distributed Systems

● Consistency
● Leader election (Zookeeper, Paxos, Raft)

● Replication principles
● More replicas: higher availability, higher

reliability, higher performance, better
scalability, but: requires maintaining
consistency in replicas

● Transparency principles apply

“Fully” Decentralized Systems

● Consistency
● Weak consistency: DHTs

● Nakamoto consensus (aka proof of work)

● Proof of stake – Leader election, PBFT protocols
Is Bitcoin eventually consistent?
— Some argue no, some argue it has even stronger

guarantees [link]

● Replication principles apply to fully decentralized
systems as well

● Transparency principles apply

https://hackingdistributed.com/2016/03/01/bitcoin-guarantees-strong-not-eventual-consistency/

Blockchain8

Distributed Systems Categorization
● Spring Term – Distributed Systems (DSy)

● Tightly/loosely coupled

● Heterogeneous systems

● Small-scale systems

● Distributed systems

(we will also talk about blockchains in this
lecture)

● Fall Term – Blockchain (BlCh)
● Loosely coupled

● Heterogeneous systems

● Large-scale systems

● Decentralized systems

(we will also talk about distributed systems in
this lecture, but DSy is highly recommended)

Blockchain9

Lecture 3

Blockchain10

Tor
● How it works

https://www.torproject.org/about/overview.html.en

Blockchain11

Tor
● Alice to Bob

Blockchain12

Tor
● Alice to Jane

Blockchain13

WebSockets
● Full-duplex communication over TCP [overview]

● REST / JSON is in one direction

● How can the server notify the browser (client?)
● Polling

— Short: request e.g. every 0.5s

— Long: request until timeout or reply

● Server Sent Events (alternative) SSE
— One way communication from server to browser (client)

— Server receives a regular HTTP request, keeps
connection open, server can now push data to the client

● WebSockets

● HTTP handshake, then upgrade to
communication channel

● Data can be text or binary

● With SSL/TLS → wss://
● Some configuration required on LBs / RRs

https://en.wikipedia.org/wiki/WebSocket
https://medium.com/system-design-blog/long-polling-vs-websockets-vs-server-sent-events-c43ba96df7c1
https://germano.dev/sse-websockets/
https://caniuse.com/eventsource
https://caniuse.com/websockets

Blockchain14

Networking: Layers
● Networking: Each vendor had its own proprietary solution - not compatible with another solution

● IPX/SPX – 1983, AppleTalk 1985, DECnet 1975, XNS 1977

● Nowadays most vendors build compatible networks hardware/software from different vendors
● Cisco, Dell, HP, Huawei, Juniper, Lenovo, Linksys, Netgear, MicroTik, Siemens, Ubiquiti, etc.

● Goal of layers: interoperability
● 1984: ISO 7498 - The Basic Reference Model for Open Systems Interconnection

OSI model

Application

Presentation

Session

Transport

Network

Data link

Pysical

"Internet model"

Application

Transport

Internet

Link

Data
DataTCP Header
DataTCP HeaderIP Header
DataTCP HeaderIP HeaderEthernet Header

https://en.wikipedia.org/wiki/IPX/SPX
https://en.wikipedia.org/wiki/AppleTalk
https://en.wikipedia.org/wiki/DECnet
https://en.wikipedia.org/wiki/Xerox_Network_Systems

Blockchain15

Layer 4 - TCP
• Connection establishment

• SYN, SYN-ACK, ACK (three way)

• Initiates TCP session: initial sequence number is ~
random

• Connection termination
• FIN, ACK + FIN, ACK (three/four way)

• 3-way handshake, when host 1 sends a FIN and
host 2 replies with a FIN & ACK

• Sequences and ACKs
• Identification each byte of data

• Order of the bytes → reconstruction

• Detecting lost data: RTO, DupACK:

• Retransmission timeout
• If no ACK is received aftert timout (e.g. 2xRTT),

resend.

● Duplicate cumulative acknowledgements,
selective ACK [link]

• ACKs for last consecutive packets

• 3 times same ACK → retransmit missing
packets (fast retransmit)

Host 1 Host 2
SYN (SEQ=x)

SYN(SEQ=y, ACK=x+1)

ACK (SEQ=x+1, ACK=y+1)

Host 1 Host 2
FIN (SEQ=x, ACK=y)

ACK(SEQ=y, ACK=x+1)

ACK (SEQ=x, ACK=y+1)

FIN(SEQ=y, ACK=x+1)

https://en.wikipedia.org/wiki/TCP_sequence_prediction_attack
https://accedian.com/blog/network-packet-loss-retransmissions-and-duplicate-acknowledgements/

Blockchain16

TCP/IP from an Application Developer View
● Server in golang (repo)

● git clone
https://github.com/tbocek/DSy

● Download GoLand, or others

● go run server.go → server

● Listening on TCP port 8081
● Return string in uppercase

● Node.js version
● Download WebStorm, or other

● Client:
● nc localhost 8081

package main
import ("bufio"
 "fmt"
 "net"
 "strings")
func main() {
 fmt.Println("Launching server...")
 ln, _ := net.Listen("tcp", ":8081") // listen on all
interfaces
 for {
 conn, _ := ln.Accept() // accept connection on port
 message, _ := bufio.NewReader(conn).ReadString('\n')
//read line
 fmt.Print("Message Received:", string(message))
 newMessage := strings.ToUpper(message) //change to
upper
 conn.Write([]byte(newMessage + "\n")) //send upper
string back
 }
}

const net = require('net');
const server = new net.Server();
server.listen(8081, function() {
 console.log('Launching server...');
});

server.on('connection', function(socket) {
 socket.on('data', function(chunk) {
 console.log(`Data received from client: $
{chunk.toString()}`);

socket.write(chunk.toString().toUpperCase() +
"\n");
 });
});

https://github.com/tbocek/FS21
https://github.com/tbocek/DSy
https://www.jetbrains.com/go/
https://golang.org/doc/editors.html
https://www.jetbrains.com/webstorm/
https://www.credencys.com/blog/ides-for-nodejs-app-development/

Blockchain17

Lecture 4

Blockchain18

Layer 4 – TCP + TLS
• Security: Transport Layer Security (TLS)

1. "client hello" lists cryptographic information,
TLS version, ciphers/keys

2. "server hello" chosen cipher, the session ID,
random bytes, digital certificate (checked by
client), optional: "client certificate request"

3. Key exchange using random bytes, now
server and client can calc secret key

4. "finished" message, encrypted with the
secret key

• 3 RTT to send first byte, 4RTT to receive
first byte

https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_8.0.0/com.ibm.mq.sec.doc/q009930_.htm

SYN/ACK
SYN/ACK

ACK
1.) 2.)

3.)
4.)

App Data

App Data

https://hpbn.co/transport-layer-security-tls/
https://en.wikipedia.org/wiki/Transport_Layer_Security#Algorithms
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_8.0.0/com.ibm.mq.sec.doc/q009930_.htm

Blockchain19

Layer 4 – TCP + TLS
• Ping to Australia: 329ms

• One way ~ 165ms

• TCP + TLS handshake:
• 3RTT = 987ms! No data sent yet

• TLS 1.3, finished Aug 2018
- 1 RTT instead of 2

- 1.) Client Hello, Key Share
- 2.) Server Hello, key Share, Verify Certificate,

Finished

- 0 RTT possible, for previous connections, loosing
perfect forward secrecy

• 90% of browsers used already support it

SYN/ACK
SYN/ACK

ACK
1.) 2.)

App Data

App Data

https://medium.com/@vanrijn/what-is-new-with-tls-1-3-e991df2caaac
https://caniuse.com/#search=tls%201.3

Blockchain20

QUIC / HTTP3
• QUIC: 1RTT (chrome example)

• For known connections: 0RTT

• Built in security

• “Google's 'QUIC' TCP alternative
slow to excite anyone outside
Google” [link] (7%, 25%)
- Facebook

- Cloudflare

• Can I use (72.5%)

• Example Australia: from 987ms to 329ms

Server Hello
Client Hello

Finished
App Data

App Data

Param
Param

https://blog.apnic.net/2019/03/04/a-quick-look-at-quic/
https://www.theregister.com/2018/01/17/quic_takeup_is_slow/
https://w3techs.com/technologies/details/ce-quic
https://w3techs.com/technologies/details/ce-http3
https://engineering.fb.com/2020/10/21/networking-traffic/how-facebook-is-bringing-quic-to-billions/
https://blog.cloudflare.com/landscape-of-api-traffic/
https://caniuse.com/http3

Distributed Systems21

Pro/Cons - Opinion
● Monorepo

● Tight coupling of projects

● Everyone sees all code / commits

● Encourages code sharing within organization

● Scaling: large repos, specialized tooling

● Polyrepo
● Loose coupling of projects

● Fine grained access control

● Encourages code sharing across organizations

● Scaling: many projects, special coordination

● Opinion: Accenture - “From my experience, for a smaller team, starting with mono-repo is
always safe and easy to start. Large and distributed teams would benefit more from poly-repo”

● My opinion: for small teams and project, use polyrepo. (I worked with small teams with mono
and polyrepo, I have worked in big projects with polyrepos, but never in a big project with
monorepos)

● Other opinion (sales pitch): https://monorepo.tools

K
ey

 D
iff

er
en

ce
s

https://www.accenture.com/us-en/blogs/software-engineering-blog/how-to-choose-between-mono-repo-and-poly-repo
https://monorepo.tools/
https://github.com/joelparkerhenderson/monorepo-vs-polyrepo#key-differences

Blockchain22

Lecture 5

Introduction

Physical machine

Hypervisor

G
ue

st
 O

S
A

pp
 1

A
pp

 2

A
pp

 3

Physical machine

G
ue

st
 O

S

G
ue

st
 O

S

Host OS

Docker

A
pp

 1

A
pp

 2

A
pp

 3

Host OS

Physical machine

Hypervisor

Guest OS

A
pp

 1

A
pp

 3
G

ue
st

 O
S

Host OS

Docker

A
pp

 2

• Virtual machines • Container • Both

24

Container Virtual Machine

Comparison

+ Reduced size of snapshots 2MB vs 45MB

+ Quicker spinning up apps

+ / - Available memory is shared

+ / - Process-based isolation (share same
kernel)

Use case: complex application setup, with
container less complex configuration

Providers: ECS, Kubernetes Engine,
Docker on Azure (or Kubernetes)

+ App can access all OS resources

+ Live migrations

+ / - Pre allocates memory

+ / - Full isolation

Use case: better hardware utilization / resource
sharing

EC2, Virtual Machines, Compute Engine,
Droplets

Market shares, market hares, other views

https://aws.amazon.com/ecs/
https://cloud.google.com/kubernetes-engine/
https://docs.microsoft.com/en-us/azure/docker/
https://aws.amazon.com/ec2/
https://azure.microsoft.com/en-us/services/virtual-machines/
https://cloud.google.com/compute/
https://www.digitalocean.com/products/droplets/
https://www.parkmycloud.com/blog/aws-vs-azure-vs-google-cloud-market-share/
https://www.skyhighnetworks.com/cloud-security-blog/microsoft-azure-closes-iaas-adoption-gap-with-amazon-aws/
https://www.backblaze.com/blog/vm-vs-containers/

25

OverlayFS
• Example

• The lower directory can be read-only or could
be an overlay itself

• The upper directory is normally writable

• The workdir is used to prepare files as they are
switched between the layers.

• Read only

• How to remove data in read-only lowerdir
• Mark as deleted in upperdir

cd /tmp
mkdir lower upper workdir overlay

sudo mount -t overlay -o \
lowerdir=/tmp/lower,\
upperdir=/tmp/upper,\
workdir=/tmp/workdir \
none /tmp/overlay

cd /tmp
mkdir lower upper workdir overlay

sudo mount -t overlay -o
lowerdir=/tmp/lower1:/tmp/lower2 /tmp/overlay

cd /tmp
mkdir lower upper workdir overlay

sudo mount -t overlay -o \
lowerdir=/tmp/lower1:/tmp/lower2,\
upperdir=/tmp/upper,\
workdir=/tmp/workdir \
none /tmp/overlay

https://blog.programster.org/overlayfs
https://wiki.archlinux.org/index.php/Overlay_filesystem

26

Cgroups
• control groups: limits, isolates, prioritization

of CPU, memory, disk I/O, network
• Install tools

• Create two groups
• Assign 20% of CPU and 80% of CPU

• Execute bash → test CPU

• Resource control with docker

ls /sys/fs/cgroup

sudo apt install cgroup-tools / yay -S libcgroup

cgcreate -g cpu:red
cgcreate -g cpu:blue

echo -n "20" > /sys/fs/cgroup/blue/cpu.weight
echo -n "80" > /sys/fs/cgroup/red/cpu.weight

cgexec -g cpu:blue bash
cgexec -g cpu:red bash

sha256sum /dev/urandom #does not work?
taskset -c 0 sha256sum /dev/urandom

docker run \
--name=low_prio \
--cpuset-cpus=0 \
--cpu-shares=20 \
alpine sha256sum /dev/urandom

docker run \
--name=high_prio \
--cpuset-cpus=0 \
--cpu-shares=80 \
alpine sah256sum /dev/urandom

https://en.wikipedia.org/wiki/Cgroups
https://www.cloudsigma.com/manage-docker-resources-with-cgroups/

27

Separate Networks
• Linux Network Namespaces

• provide isolation of the system resources
associated with networking [source]

• Create virtual ethernet connection

• Configure network

• Run server

• Server can be contacted

• How to connect to outside?
• E.g. layer 3

ip netns add testnet
ip netns list

ip link add veth0 type veth peer name veth1 netns testnet
ip link list #?
ip netns exec testnet <cmd>

ip addr add 10.1.1.1/24 dev veth0
ip netns exec testnet ip addr add 10.1.1.2/24 dev veth1
ip netns exec testnet ip link set dev veth1 up

ip netns exec blue nc –l 8000

iptables -t nat -A POSTROUTING -s 10.1.1.0/24 -o enp9s0 -j MASQUERADE
iptables -A FORWARD -j ACCEPT #open up wide…

https://blog.scottlowe.org/2013/09/04/introducing-linux-network-namespaces/
https://www.man7.org/linux/man-pages/man7/network_namespaces.7.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Networking: Layers
	Layer 4 - TCP
	TCP/IP from an Application Developer View
	Slide 17
	Layer 4 – TCP + TLS
	Layer 4 – TCP + TLS (2)
	QUIC
	Slide 21
	Slide 22
	Introduction
	Comparison
	OverlayFS
	Cgroups
	Separate Networks

