OST

Eastern Switzerland
University of Applied Sciences

Blockchain (BICh)

Algorithms for P2P Systems

Thomas Bocek
LANIN2021

Bloom Filter

* An array of m bits, initially all bits set to 0
* A bloom filter uses k independent hash functions
hl, h2, ..., hk with range {1, ..., m}

e Each input is hashed with every hash function

-+ Set the corresponding bits in the vector Strings

e Operations

Si

Insertion

— The bit Alhi(x)] for 1L <i<karesetto 1

+ Query

— Yes if all of the bits A[hi(x)] are 1, no otherwise

Deletion

— Removing an element from this simple Bloom filter is impossiuic

2 | Blockchain

Hash Functions

hl(S@)

hz(Si)

hk(Si)

Bloom Filter

A

m bits

/

OOST

Query of an Element, m=18, k=3

* Insertx,y, z * Example for False-positives

Insertions
* Query w
- Hash (,color printer*) => (1,4,6)
{x, vz} — Hash (,digital camera®“) => (3,4,5)

- Bloom filter (1,3,4,5,6)

Query

(OJ1]JOJ1]1]1]OJOJOJOJO]JL]O]L1]O0JOJ1]O]

- Hash (,heat sensor*) => (3,4,6)
\% — Matches since bits 3,4,6 are all setto 1

w * Online

* False-negative

Query

http://en.wikipedia.org/wiki/Bloom_filter ~ Hash (“color printer”) => (1,4,6) , matches (1,3,4,5,6) ~ no
false-negative

3 | Blockchain O OST

http://billmill.org/bloomfilter-tutorial/
http://en.wikipedia.org/wiki/Bloom_filter

properties * No false negative, but false positive

« Space Efficiency * False-positive probability:
- Any Bloom filter can represent the entire * n number of strings; k hash functions; m-bit
universe of elements vector
nk
— In this case, all bits are 1 f= (1 — e m)k
. | :
* No Space Constraints e 2
= | m/n= 3
. 084 = m/n=
- Add never fails - I
)
- But false positive rate increases steadily as g ooy |
elements are added £ o4l
* Simple Operations % 02l
s :
* Union of Bloom filters: bitwise OR 0 ooa o e o e o
0 2 4 6 8 10
- Intersection of Bloom filters: bitwise AND Number of hash functions (k)

=> Given m/n, there is an optimal

: number of hash functions (opt. k = m/n In 2)
4 | Blockehain (when 50% of the bits are set) O OsST

Bloom Filter Variants

 Compressed Bloom Filters e Counting Bloom Filters
- When the filter is intended to be passed as a message - Entry in the filter not be a single bit but a counter
False-positive rate is optimized for the compressed - Delete operation possible (decrementing counter)
lSJII[)o;r:e:i)lter (uncompressed bit vector m will be larger but . Variable-Increment Counting Bloom Filter
However, compression/decompression, more memory * Scalable Bloom Filter
« Generalized Bloom FEilter « Adapt dynamically to number of elements, consist of

regular Bloom filters
Two type of hash functions gi (reset bits to 0) 3} _ g ‘ _ ‘ ai
and hj (set bits to 1) A SBF is made up of a series of one or more (plain)

Bloom Filters; when filters get full due to the limit on the

Start with an arbitrary vector (bits can be either O or 1) fill ratio, a new one is added; querying is made by

In case of collisions between gi and hj, bit is reset to 0 testing for the presence in each filter”
Store more info with low false positive * Others, e.g., Cuckoo filter
Produces either false positives or false negatives * Usage: e.qg., fast search at LinkedIn

5 | Blockchain O OST

http://www.eecs.harvard.edu/~michaelm/NEWWORK/postscripts/cbf2.pdf
http://www.gta.ufrj.br/ftp/gta/TechReports/LVD05d.pdf
https://docs.google.com/a/axelra.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxvcmlyb3R0ZW5zdHJlaWNofGd4Ojc3Y2Q4ZTU4ZjVjODg0Zg
http://gsd.di.uminho.pt/members/cbm/ps/dbloom.pdf
https://www.cs.cmu.edu/~dga/papers/cuckoo-conext2014.pdf
https://engineering.linkedin.com/open-source/cleo-open-source-technology-behind-linkedins-typeahead-search

Merkle Trees o

HABCDEFGHIKLMNOP

HABCDEFGH HiJKLMNOP
HABCD HEFGH HyjkL HMNOP

Mo ol [te| (][] [t [a] [t

Ha [HB || Hc || Hp |1 HE || HE || Hg || HH || HI Hj He [H (| Hm I HN (| Ho || Hp

A Merkle tree is a binary hash tree containing leaf nodes

Constructed bottom-up, i.e.,

Used to summarize all transactions in a block

To prove that a specific transaction is included in a block, a node only needs to produce hashes,
constituting a merkle path connecting the specific transaction to the root of the tree.

6 | Blockchain O OST

Merkle Proofs S ot~ ~.

--—-

HABCDEFGH LKLMNOP |

* Anode can prove that transaction K is included in the block by producing a merkle path

- 10g>16 =4 hashes long

7 | Blockchain O OS T

BitTorrent: Mechanisms

* Magnet links

« Magnet is URI scheme, does not point to a centralized tracker 0-0 0-1 1-0 1-1

— No centralized tracker: pointer to DHT

— magnet:?xI=1000&dn=songl.mp3&xt=urn:tree:tiger:2A3B...

General purpose, not only for BT

+ tree:tiger -~ Hash Tree

* Merkle hash / hash tree also seen in
Bitcoin blocks (transactions), MAST (Merklized

Tree of hashes (|| - concatenation)
hash 0 = hash(hash 0-0 || hash 0-1)
hash 1 = hash(hash 1-0 || hash 1-1)
Top hash = hash(hash O || hash 1)

Abstract Syntax Tree)

8 | Blockchain

‘ Top hash ‘

N

Hash Hash
0 1

AN N

Hash Hash Hash Hash

[S S

Data| [Data| [Data| [Data
block block block block
1 2 | 3 | 4

http://en.wikipedia.org/wiki/Hash_tree

O

And ' OP_CheckSig

l Y L y

OP_CheckSequence Verify
(OP_CSV)

OP_CheckMuliSig OP_Drop Alice’s public key

signalures reguired)

A i

n{2)
(Number of ‘ Bob's public key Charlie’s public key
public keys provided)

mi2)
Timeoul

(How many

https://bitcointechtalk.com/what-is-a-bitcoin-merklized-abstract-syntax-tree-mast-33fdf2da5e2f

OOST

https://en.wikipedia.org/wiki/Magnet_URI_scheme

9

BitTorrent: Mechanisms

* Verification
- Peer A has top hash (root hash)

- Peer downloads C4 from peer B

— create hash 8

* Need hash 10, 13, 3 (uncle hash)

— Can be from peer B
« With 8,10,13,3 can create root hash

- Vverify this root hash

* Usage: Blockchain, P2P filesharing, git,

Amazons Dynamo, ZFS

Blockchain

7 = root hash

/ \
/ \
/ \
/ \
3* 11
/ \ / N\
/ \ / \
/ \ / \
1 5 9 13* = uncle hash
/ \ / \ / \ / N\

(0 2 - 6 8 10* 12 14

Co C1 C2 C3 C4 C5 C6 E
=chunk index AN = empty hash

The Merkle hash tree of an interval of width w=8

http://datatracker.ietf.org/doc/draft-ietf-ppsp-peer-protocol/ Section 5.2

OOST

http://datatracker.ietf.org/doc/draft-ietf-ppsp-peer-protocol/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

