
11.11.2021

Blockchain (BlCh)
Algorithms for P2P Systems

Thomas Bocek

Blockchain2

Bloom Filter
● An array of m bits, initially all bits set to 0

● A bloom filter uses k independent hash functions
● h1, h2, …, hk with range {1, …, m}

● Each input is hashed with every hash function
● Set the corresponding bits in the vector

● Operations
● Insertion

— The bit A[hi(x)] for 1 < i < k are set to 1

● Query
— Yes if all of the bits A[hi(x)] are 1, no otherwise

● Deletion
— Removing an element from this simple Bloom filter is impossible

Strings

Hash Functions

Bloom Filter

Blockchain3

Query of an Element, m=18, k=3
● Insert x, y, z

● Query w

● Example for False-positives
● Insertions

— Hash („color printer“) => (1,4,6)

— Hash („digital camera“) => (3,4,5)

— Bloom filter (1,3,4,5,6)

● Query
— Hash („heat sensor“) => (3,4,6)

— Matches since bits 3,4,6 are all set to 1

● Online

● False-negative
● Query

— Hash (“color printer”) => (1,4,6) , matches (1,3,4,5,6) → no
false-negative

http://en.wikipedia.org/wiki/Bloom_filter

http://billmill.org/bloomfilter-tutorial/
http://en.wikipedia.org/wiki/Bloom_filter

Blockchain4

Properties
● Space Efficiency

● Any Bloom filter can represent the entire
universe of elements
— In this case, all bits are 1

● No Space Constraints
● Add never fails

● But false positive rate increases steadily as
elements are added

● Simple Operations
● Union of Bloom filters: bitwise OR

● Intersection of Bloom filters: bitwise AND

● No false negative, but false positive

● False-positive probability:
● n number of strings; k hash functions; m-bit

vector

=> Given m/n, there is an optimal
number of hash functions (opt. k = m/n ln 2)

(when 50% of the bits are set)

Blockchain5

Bloom Filter Variants
● Compressed Bloom Filters

● When the filter is intended to be passed as a message

● False-positive rate is optimized for the compressed
bloom filter (uncompressed bit vector m will be larger but
sparser)

● However, compression/decompression, more memory

● Generalized Bloom Filter
● Two type of hash functions gi (reset bits to 0)

and hj (set bits to 1)

● Start with an arbitrary vector (bits can be either 0 or 1)

● In case of collisions between gi and hj, bit is reset to 0

● Store more info with low false positive

● Produces either false positives or false negatives

● Counting Bloom Filters
● Entry in the filter not be a single bit but a counter

● Delete operation possible (decrementing counter)

● Variable-Increment Counting Bloom Filter

● Scalable Bloom Filter
● Adapt dynamically to number of elements, consist of

regular Bloom filters

● “A SBF is made up of a series of one or more (plain)
Bloom Filters; when filters get full due to the limit on the
fill ratio, a new one is added; querying is made by
testing for the presence in each filter”

● Others, e.g., Cuckoo filter

● Usage: e.g., fast search at LinkedIn

http://www.eecs.harvard.edu/~michaelm/NEWWORK/postscripts/cbf2.pdf
http://www.gta.ufrj.br/ftp/gta/TechReports/LVD05d.pdf
https://docs.google.com/a/axelra.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxvcmlyb3R0ZW5zdHJlaWNofGd4Ojc3Y2Q4ZTU4ZjVjODg0Zg
http://gsd.di.uminho.pt/members/cbm/ps/dbloom.pdf
https://www.cs.cmu.edu/~dga/papers/cuckoo-conext2014.pdf
https://engineering.linkedin.com/open-source/cleo-open-source-technology-behind-linkedins-typeahead-search

Blockchain6

Merkle Trees

● A Merkle tree is a binary hash tree containing leaf nodes

● Constructed bottom-up, i.e.,

● Used to summarize all transactions in a block

● To prove that a specific transaction is included in a block, a node only needs to produce hashes,
constituting a merkle path connecting the specific transaction to the root of the tree.

Blockchain7

Merkle Proofs

● A node can prove that transaction K is included in the block by producing a merkle path
● 𝒍𝒐𝒈𝟐 𝟏𝟔 = long𝟒 𝒉𝒂𝒔𝒉𝒆𝒔

Blockchain8

BitTorrent: Mechanisms
● Magnet links

● Magnet is URI scheme, does not point to a centralized tracker
— No centralized tracker: pointer to DHT

— General purpose, not only for BT

— magnet:?xl=1000&dn=song1.mp3&xt=urn:tree:tiger:2A3B…

● tree:tiger → Hash Tree
— Tree of hashes (|| → concatenation)

— hash 0 = hash(hash 0-0 || hash 0-1)

— hash 1 = hash(hash 1-0 || hash 1-1)

— Top hash = hash(hash 0 || hash 1)

● Merkle hash / hash tree also seen in
Bitcoin blocks (transactions), MAST (Merklized
Abstract Syntax Tree)

http://en.wikipedia.org/wiki/Hash_tree

https://bitcointechtalk.com/what-is-a-bitcoin-merklized-abstract-syntax-tree-mast-33fdf2da5e2f

https://en.wikipedia.org/wiki/Magnet_URI_scheme

Blockchain9

BitTorrent: Mechanisms
● Verification

● Peer A has top hash (root hash)

● Peer downloads C4 from peer B
— create hash 8

● Need hash 10, 13, 3 (uncle hash)
— Can be from peer B

● With 8,10,13,3 can create root hash

→ verify this root hash

● Usage: Blockchain, P2P filesharing, git,
Amazons Dynamo, ZFS

http://datatracker.ietf.org/doc/draft-ietf-ppsp-peer-protocol/ Section 5.2

http://datatracker.ietf.org/doc/draft-ietf-ppsp-peer-protocol/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

