
11.05.2025

Distributed Systems (DSy)
Performance

Thomas Bocek



Distributed Systems2

Learning Goals
● Lecture 12 (Performance)

● Get a feeling how fast it runs



Distributed Systems3

Latency Numbers Every Programmer Should Know
● Interactive [link] from 1990 - 2020

● Network stays ~ 150ms

● L1: 1ns / branch miss 3ns – example

● HDD / SSD / NVMe (Non-Volatile Memory 
Express) - comparison, 2

● Latency and throughput important

● Napkin Math [link]

● Cost

https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://www.simplyblock.io/glossary/nvme-latency/
https://www.serversimply.com/blog/comparing-sas-sata-nvme-and-cxl
https://github.com/sirupsen/napkin-math


Distributed Systems4

Latency Numbers Every Programmer Should Know
● Compression Ratios (from napkin-math)

— HTML: 2-3x

— Source Code: 2-4x

● Compression benchmarks [link]

— enwik8: 100MB, enwik9: 1GB

● Compression speed vs. ratio, read vs. write

● HTTP: gzip, brotli, zstd [link]
● Brotli: optimized for web content

— HTML/XML elements, CSS properties, JavaScript 
keywords, HTTP headers, URI/URL, JSON/XML, 
common words

— Dictionary in Brotli algorithm, gzip, zstd not

● zstd: General purpose, better than gzip, faster 
and better ratio

● Best practice: enable compression, default 
ration (only tune after measurement)
● Or you have a static site, e.g., PrevelteKit → 

maxed out (zopfli)

● Image compression, choose
● Jpeg (guetzli, mozjpeg), jpeg xl, avif, webp, 

png, gif…

● Image as SVG → brotli, Google in 2015: logo 
in 305bytes – in 146 bytes

● Comparison

https://www.mattmahoney.net/dc/text.html
https://www.mattmahoney.net/dc/textdata.html
https://blog.cloudflare.com/new-standards/
https://tbocek.github.io/preveltekit/
https://github.com/google/zopfli
https://github.com/google/guetzli
https://github.com/mozilla/mozjpeg
https://www.clicktorelease.com/blog/svg-google-logo-in-305-bytes/
https://shortpixel.com/blog/avif-vs-webp/


Distributed Systems5

Latency Numbers Every Programmer Should Know
● How many requests / sec can your site 

handle?

● Artillery [link] - Looks impressive, but renders 
page on client, client may become bottleneck

● Benchmarks via Wifi, testing the network 
bottleneck

● Benchmark via new connections, testing the 
slow start

● Benchmark the login page. Testing the 
computational complexity of bcrypt

● Example repository, simple page, golang, PostgreSQL DB

● Apache Benchmark
ab -n 10000 -c 50 -k https://dsl.i.ost.ch/

● localhost – fast machine 13k req/s, slow machine 2.8k req/s

— Get your baseline

● dsl.i.ost.ch – testing my instance, no DB, 6k req/s

● If you don’t get 1k req/s, something is wrong

● Best practice

● Make it work, make it correct, make it fast [link]

● Premature optimization is the root of all evil [link]

● Only measure and optimize your use-case

https://www.artillery.io/
https://wiki.c2.com/?MakeItWorkMakeItRightMakeItFast
https://en.wikipedia.org/wiki/Program_optimization#cite_note-autogenerated268-6

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

