
27.04.2025

Distributed Systems (DSy)
Application Protocols
Part 2

Thomas Bocek

Distributed Systems2

Learning Goals
● Lecture 10 (Application Protocols)

● Important protocols on layer 9

● Part 1: custom protocols, RPC, HTTP,
JSON, WebSockets, Server Sent Events

● Part 2: Bencoding, WebRTC, DNS

Distributed Systems3

Protocols Bencoding and Others
● Benconding

● Integers: i42e, Byte string: 4:test, list: l4:testi42ee
● Map/dictionary: d4:test3:ost3:tomi42ee

● Use: BitTorrent

● UBJSON

● Cap’n Proto , FlatBuffers
● Do not serialize, just copy, little-endian

● Apache Arrow
● Do not serialize, copy, and optimally layout for

memory access

● … and many others

● Benchmarks, benchmarks, …

https://en.wikipedia.org/wiki/Bencode
https://en.wikipedia.org/wiki/UBJSON
https://capnproto.org/
https://google.github.io/flatbuffers/
https://arrow.apache.org/
https://en.wikipedia.org/wiki/Comparison_of_data_serialization_formats
https://google.github.io/flatbuffers/flatbuffers_benchmarks.html
https://codeburst.io/json-vs-protocol-buffers-vs-flatbuffers-a4247f8bda6f

Distributed Systems4

WebRTC – Introduction
• WebRTC for browser to browser

communication

• P2P, no server involved (~mostly)

• Real time communication (RTC) via API

• Main goal: eliminate plugins or native apps

• Supported by Google, Microsoft, Mozilla, Opera, Apple

• Google bought in 2010 Global IP Solutions (GIPS)
and open sourced WebRTC in 2011

• Protocol standardized by IETF (codec requirements,
media protocol), JavaScript API by W3C

• Supported initially by Chrome, Firefox (now many
others)

• First cross-browser call in February 2013

• Compatibility, 97%

• PeerJS

• Not all browser work 100% compatbile with
each other → PeerJS

• «PeerJS provides a complete, configurable,
and easy-to-use peer-to-peer API built on top
of WebRTC»

https://en.wikipedia.org/wiki/WebRTC
https://www.w3.org/TR/webrtc/
https://caniuse.com/#search=webrtc
https://peerjs.com/

Distributed Systems5

WebRTC – Introduction
• Filling gap in the Web-Experience

• Video Chat → Google Hangouts Plugin, Flash, Java

• Multimedia / Conferences→ Expensive, proprietary 3rd party apps

• Customer Service → Chat only, 3rd party plugins/apps

• WebRTC widely deployed, no client necessary!

• Used in WhatsApp, Facebook Messenger, whereby.com

• Standard finalized: 26.01.2021
• W3C Recommendation (W3C process flow)

• «The RTCPeerConnection API has endured three design iterations on this topic over the years. As
a result, each browser today implements a snapshot from a different point in the timeline of an
evolving spec.» (source) (other updates) (large messages, fixed)

https://whereby.com/tombocek
https://www.w3.org/TR/webrtc/
https://www.w3.org/2014/Talks/chairs-part4/#/45
https://blog.mozilla.org/webrtc/the-evolution-of-webrtc/
https://blog.mozilla.org/webrtc/how-to-avoid-data-channel-breaking/
https://lgrahl.de/articles/demystifying-webrtc-dc-size-limit.html
https://blog.mozilla.org/webrtc/large-data-channel-messages/

Distributed Systems6

WebRTC – Concerns
• HTML browsers get bloated

• Several GB RAM to open couple of tabs?

• Hint: adblocker

• WebRTC API could be simplified

• Security Concerns
• Private IP / IP behind VPN, Tor? (https://dsl.i.os

t.ch/lect/webrtc/)

• But: WebRTC forbids unencrypted
communication
• DTLS, SRTP

• Complexity - SCTP over DTLS over UDP

https://www.pcworld.com/article/3213031/best-web-browsers.html?page=2
https://www.ej-compute.org/index.php/compute/article/view/144
https://github.com/diafygi/webrtc-ips
https://dsl.i.ost.ch/lect/webrtc/
https://dsl.i.ost.ch/lect/webrtc/
https://www.vocal.com/webrtc/webrtc-and-complete-call-security/
https://webrtc-security.github.io/

Distributed Systems7

WebRTC – Introduction
• On the bright side: developer does not need

to care about NAT

• Abstraction using STUN, ICE, TURN

• STUN: session traversal utilities for NAT
(detect which kind of NAT, rfc5389)

- “STUN is not a NAT traversal solution by itself”

• TURN: traversal using relays around NAT

https://en.wikipedia.org/wiki/Network_address_translation
https://tools.ietf.org/html/rfc5389
https://en.wikipedia.org/wiki/Traversal_Using_Relays_around_NAT

Distributed Systems8

WebRTC – Introduction
• TURN

• TURN client/server uses UDP, TCP/TLS

- Some firewalls block UDP entirely

• UPnP / NAT-PMP setup by browser optional?

— Bugzilla@Mozilla – Bug 860045

• ICE - Interactive Connectivity Establishment

• RFC 8445 a protocol for NAT traversal

• “ICE works by exchanging a multiplicity of IP
addresses and ports, which are then tested for
connectivity by peer-to-peer connectivity
checks.”

source

http://tools.ietf.org/html/draft-kaplan-rtcweb-api-reqs-00
https://bugzilla.mozilla.org/show_bug.cgi?id=860045
https://tools.ietf.org/html/rfc8445
https://andrewjprokop.wordpress.com/2014/07/21/understanding-webrtc-media-connections-ice-stun-and-turn/

Distributed Systems9

WebRTC Architecture - Triangle

Peer
Connection

Sign
ali

ng
, e

.g
.

W
eb

so
ck

et
s

Signaling, e.g.

W
ebsockets

Distributed Systems10

WebRTC Signaling
• A proof-of-concept for WebRTC signaling using sound. Works with all devices that have

microphone + speakers. Runs in the browser:

• https://github.com/ggerganov/wave-share

https://github.com/ggerganov/wave-share

Distributed Systems11

WebRTC - Demo
• Server - server.js

• Node.js server

• Serves files (index.html / express)

• Listens to incoming WS messages and
broadcast messages to all connected clients

• 26 loc

• npm i / node server.js

• Minimal example!

Example: https://github.com/tbocek/DSy/webrtc

const express = require('express');
const WebSocket = require('ws');

let app = express();
// setup static files
app.use(express.static('.'));
// setup listening
let server = app.listen(4000, function () {
 console.log("listening on " +
server.address().address + ":" + server.address().port);
});

//WebSocket broadcast setup
const wss = new WebSocket.Server({ server });
wss.on('connection', function(ws) {
 ws.on('message', function(message) {
 // Broadcast any received message to all clients
 console.log('received: %s', message);
 wss.clients.forEach(function(client) {
 if(client.readyState === WebSocket.OPEN) {
 client.send(message.toString());
 }
 });
 });
});

console.log('Server running.');

http://expressjs.com/
https://github.com/tbocek/DSy/webrtc

Distributed Systems12

WebRTC Architecture - Demo
Broadcast peers (also Peer 2)

Peer 1 Peer 2

dataChannel.send()

dataChannel.onmessage

cr
ea

te
O

ffe
r

Server

createO
ffer

createAnsw
er

cr
ea

te
An

sw
er

Local session description Remote session description

Local session descriptionRemote session description

(ICE*) first
exchange network
information

IC
E

ca
nd

id
at

e

IC
E candidate

IC
E candidate

IC
E

ca
nd

id
at

e

Distributed Systems13

WebRTC – Outlook
• Strong focus on VoIP

• Skype competitor? MS Teams?

• Microsoft / IE / Edge and WebRTC?

● Fewer plugins (flash, java), fewer registrations

• Mandatory Codecs: VP8, H264

• Web-based P2P frameworks

• http://peerjs.com - make the API simpler, is it complex?

https://www.rfc-editor.org/rfc/rfc7742.html
http://peerjs.com/

Distributed Systems14

Application Protocol: DNS
● Translates human readable domain names to IP addresses

“phonebook of the Internet”

● Delegate authority over sub-domains to other name servers

● Lots of new TLD: .zuerich, .bmw, .americanexpress, .youtube, .
გე (application fee 185k USD) - not widely used

● No special characters: ASCII (no UTF)

● But, Punycode: bücher.tld → xn--bcher-kva.tld

● Hierarchical and decentralized naming system for computers

● E.g., dsl.i.ost.ch

● Uses UDP, port 53

● Designed in 1983: unencrypted, unsigned

● Before DNS: exchange of hosts.txt

● Does not scale

.

ost

com netch

www

tomp2p

dsl

tomp2p

bmwtld

root

sld

https://data.iana.org/TLD/tlds-alpha-by-domain.txt
http://nic.xn--node/
http://nic.xn--node/
https://newgtlds.icann.org/en/applicants/global-support/faqs/faqs-en
https://newgtlds.icann.org/en/applicants/global-support/faqs/faqs-en
https://newgtlds.icann.org/en/applicants/global-support/faqs/faqs-en
https://en.wikipedia.org/wiki/Punycode
https://en.wikipedia.org/wiki/Top-level_domain
https://en.wikipedia.org/wiki/DNS_root_zone
https://en.wikipedia.org/wiki/Second-level_domain

Distributed Systems15

Application Protocol: DNS
● Primary + secondary DNS in case of failure

● Secondary DNS gets data from primary

● Typical setup

● User

● Caching/forwarding DNS (e.g., dnsmasq)

● Recursive servers: DNS name resolution for applications
(e.g, bind/unbound)

● Authoritative servers: providing a definitive answer of e.g.,
tomp2p.net (e.g., bind/nsd)

— Authoritative DNS service allows others to find your domain;

Recursive DNS allows you to resolve other domains

● Restriction to 13 root servers due to 512 byte packet
limit

● With anycast, ~1000 root servers around the world

● E.g. BIND

User

Home router:
caching DNS

ISP/you:
recursive DNS

server

tomp2p DNS
authoritative

server

Root DNS
authoritative

server

.net DNS
authoritative

server

http://www.thekelleys.org.uk/dnsmasq/doc.html
https://www.isc.org/bind/
https://nlnetlabs.nl/projects/unbound/about/
https://www.isc.org/bind/
https://www.nlnetlabs.nl/projects/nsd/about/
https://www.zytrax.com/books/dns/ch7/xfer.html

Distributed Systems16

Application Protocol: DNS
● l.root-servers.net , 1 root IP with anycast

mirrored in 138 locations

● All root servers

● 2015: Internet DNS servers withstand huge
DDoS attack [link]

● 5m requests/s – some DNS could
handle it

● Root zone is controlled by the United States
Department of Commerce, operations by
ICANN

● Root zone file: download

ht
tp

s:
//w

w
w

.ia
na

.o
rg

/d
om

ai
ns

/r
oo

t/s
er

ve
rs

https://root-servers.org/
https://root-servers.org/media/news/events-of-20151130.txt
https://www.iana.org/domains/root/files
https://www.iana.org/domains/root/servers

Distributed Systems17

Application Protocol: DNS
● DNS structure

● TTL defines the duration in seconds that the record may
be cached by any resolver. “0” means no cache.
Recommendation: > 1d

● Type of records

● SOA - Start of Authority record: serial number and
different caching times

● NS - Name Server Record – sets the authoritative name
server for this zone. 2 NS records – round robin! more
sophisticated LB: split horizon

● MX - name and relative preference of mail servers

● A/AAAA - IPv4/IPv6 Address Record

● TXT - arbitrary and unformatted text

● PTR - opposite of A /AAAA

$TTL 3D
$ORIGIN tomp2p.net.
@ SOA ns.nope.ch. root.nope.ch. (2018030404 8H
2H 4W 3H)
 NS ns.nope.ch.
 NS ns.jos.li.
 MX 10 mail.nope.ch.
 A 188.40.119.115
 TXT "v=spf1 mx
-all“
www A 188.40.119.115
bootstrap A 188.40.119.115
$INCLUDE "/etc/opendkim/keys/mail.txt“
$INCLUDE "/etc/bind/dmarc.txt"

https://www.zytrax.com/books/dns/ch8/soa.html
https://www.zytrax.com/books/dns/ch8/ns.html
https://www.zytrax.com/books/dns/ch9/rr.html
https://www.zytrax.com/books/dns/ch4/#split
https://www.zytrax.com/books/dns/ch8/mx.html
https://www.zytrax.com/books/dns/ch8/a.html
https://www.zytrax.com/books/dns/ch8/txt.html
https://www.zytrax.com/books/dns/ch8/ptr.html
https://en.wikipedia.org/wiki/Sender_Policy_Framework

Distributed Systems18

Application Protocol: DNS
● To run your own DynDNS service: TSIG

● Enables DNS queries to authenticate updates to
a DNS database

● Uses shared secret and cryptographic hashing for
authentication

● DNSSEC (security extension)
● Authenticated and data integrity, not

confidentiality
● Can be used to bootstrap other security systems

— Certificates, SSH fingerprints, IPSec pub keys

● KSK: key signing keys to sign ZSK
● ZSK: zone signing keys to sign records

— Example: dig DNSKEY tomp2p.net

● New record types: RRSIG, DNSKEY, DS, …

● RRSIG, sign all resource sets

● DS (delegation signer) record in the parent
zone

— dig DS tomp2p.net

● ZSK to sign RRset

— How to validate ZSK?

● KSK to sign ZSK pub key

— With 2 keys, its easier to change ZSK

https://en.wikipedia.org/wiki/TSIG
https://www.cloudflare.com/dns/dnssec/how-dnssec-works/

Distributed Systems19

Application Protocol: DNS
• DNS • DNSSEC

User
System

ISP/you:
recursive DNS

server

tomp2p DNS
authoritative

server

Root DNS
authoritative

server

.net DNS
authoritative

server

User
System

ISP/you:
recursive DNS

server

tomp2p DNS
authoritative

server

Root DNS
authoritative

server

.net DNS
authoritative

server

Distributed Systems20

Application Protocol: DNS
• DoT (assuming DNSSEC) • DoH (assuming DNSSEC)

User
System

ISP/you:
recursive DNS

server

tomp2p DNS
authoritative

server

Root DNS
authoritative

server

.net DNS
authoritative

server

User

ISP/you:
recursive DNS

server

tomp2p DNS
authoritative

server

Root DNS
authoritative

server

.net DNS
authoritative

server

S
ys

te
m

B
ro

w
se

r

Cloudflare:
recursive DNS

server

Port: 853

Distributed Systems21

DoH vs. DoT

● provides confidentiality of lookups in transit

● Uses standard HTTP/2, on the standard port
(443)
● Cannot distinguish between traffic/DNS

● Trivially deployed , DNS response are served
like simple web pages

● Performance: TCP+TLS handshake → 2/3
RTT
● But: Cloudflare is close to you

● Difficult upgrade path for clients: per-
application installation

● Browsers can perform DNS queries using
Javascript

● provides confidentiality of lookups in transit

● DNS over TLS, separate port (853)
● Can be blocked

● Widely supported by serving software (Bind,
PowerDNS, Unbound) and public resolvers
(Cloudflare, Quad9, Google)

● Performance: TCP+TLS handshake → 2/3
RTT
● But: ISP is close to you

● Easy upgrade path for clients: clients can
test if the configured resolver supports DoT
on port 853, fall back to DoU53 otherwise)

DoH DoT

Distributed Systems22

Let’s encrypt
● Non-profit CA

● Provides certificates for TLS

● Golive in 2016 (started in 2012), now issuing
5m certificates per day

● Certificates or domain-validation certificates.
Cannot compete with traditional CA (identity
checks)

● Certs have automated renewal
● ACME protocol – challenge response

— Automated Certificate Management Environment

● Query Web servers or DNS servers (wildcard)

● Certbot – client for ACME

● certbot certonly --webroot -w /tmp -d

ost.tomp2p.net --debug-challenges

● Copy the challenge where Let’s encrypt server
can find it (in my case /var/www/html)

● Nginx config

● This needs to be automated!

● Caddy and Traefik already implement ACME

server_name ost.tomp2p.net;
 ssl_certificate
/etc/letsencrypt/live/ost.tomp2p.net/fullchain.pem;
 ssl_certificate_key
/etc/letsencrypt/live/ost.tomp2p.net/privkey.pem;

43 6 * * * root certbot renew --post-hook "systemctl
reload nginx"

https://letsencrypt.org/
https://letsencrypt.org/2024/12/11/eoy-letter-2024/
https://tools.ietf.org/html/draft-ietf-acme-acme-18
https://caddyserver.com/docs/automatic-https
https://doc.traefik.io/traefik/https/acme/

	Slide 1
	Slide 2
	Protocols Bencoding and Others
	WebRTC – Introduction
	WebRTC – Introduction (2)
	WebRTC – Concerns
	WebRTC – Introduction (3)
	WebRTC – Introduction (4)
	WebRTC Architecture - Triangle
	WebRTC Signaling
	WebRTC - Demo
	WebRTC Architecture - Demo
	WebRTC – Outlook
	Application Protocol: DNS
	Application Protocol: DNS (2)
	Application Protocol: DNS (3)
	Application Protocol: DNS (4)
	Application Protocol: DNS (5)
	Application Protocol: DNS (6)
	Application Protocol: DNS (7)
	The DNS war
	Let’s encrypt

