OST

Eastern Switzerland
University of Applied Sciences

Distributed Systems (DSy)

Web Architecture

Thomas Bocek

280557025



Learning Goals

* Lecture 6
- What are the options to build my challenge task?
- What is currently “state-of-the-art™?
- CORS

2 | Distributed Systems O OST



Server-Side Rendering

* “Classic” approach - “SSR” - Response: Generate the appropriate HTML,

CSS, and JavaScript for the requested page.
e Server generates HTML/JS/CSS

dynamically, sends the assets in real-time to
the browser

Browser rendering: browser receives response
and renders page

* Big advantage: SEO, but needs the server

User request: browser sends a request to the \ _
rendering for every request (caching!)

web server (server-side routing)
Server processing: server processes request e Static site generation: pre-render

by running server-side code (e.g., C#, Java, HTML/CSS/JS since its the same for every
.} user. Done only once, resp, if the content
— Fetch required data from a database or other changes.

Sources - https://dsl.i.ost.ch — markdown to HTML

— Server-side code can use template engines to
render the HTML - reusability

3 | Distributed Systems O OST

Can also include DB access


https://dsl.i.ost.ch/

Server side rendering (SSR) Simple Example

* Request entire page

Service
Instance 1

Service
Instance 2

=
o
D
a
o
D
Q)
=
(@)
(D
B

GET '
o o https://dsl.i.ost.ch/lect/fs25/ <!DOCTYPE html>
S <html>
- < <head>

<title>Distributed
Systems and Ledgers
Lab</title>

4 | Distributed Systems

OOST



5

Single Page Application SPA |/ CSR

Interactions occur within a single web page

Client page dynamically updates as the user
iInteracts with it, providing a smooth, app-like
experience

Relies on JavaScript to update Ul

- Initial request: browser sends a request to
receive initial HTML/JS/CSS

+ Initial response: server returns a single HTML
file with CSS/JavaScript. JavaScript files
contain the application's logic

- Browser rendering: shows HTML file, typically
a spinner, then executes JavaScript

Distributed Systems

User interactions: JavaScript manages the Ul
updates. Application does not require full page
reloads. When you click a link in an SPA,
instead of making a traditional HTTP request:

— JavaScript intercepts the click event

Prevent default browser navigation
— Update the URL using the History API

— Render new content without requesting new
HTML document

API communication: When the SPA needs to
fetch or send data, communicates through
APls

OOST



Single Page Application SPA |/ CSR

* Use a framework: React, Angular, Vue * Client-side routing: SPAs for navigation

* Feels more app like - Server side routing? — default to index.html, as

client side routing “inside” index.html
* The backend serves API requests only

* SEO only works if JavaScript is executed at

the SE. 3000 {
+ Crawler gets JavaScript code, needs to root * /var/www/html

execute, then it knows the content try_files {path} {path}.html /index.html

— Many corner cases

* Good separation: Ul in HTML/CSS/JS,
backend in /api

6 | Distributed Systems O OST



Simple Example

* |nitial load: entire page

Service * Further requests: only updates
Instance 1 partially

Service
Instance 2

—
o
QD
o
&
Q
)
Q
@
L

Frontend

GET
®_ o https://dsl.i.ost.ch/api/xy nidr: "file",

{"menu": {

.‘. # "Value": "F'ile" y
USGI’S _ c

7 | Distributed Systems O OST




Architecture Comparison

* Server side rendering (SSR) * Single page application (SPA), client side
rending (CSR)

Service
Instance 1

Jeouefeq peo

Service
Instance 1

Service
Instance 2

Jaouef:q peo

Frontend

8 | Distributed Systems




9

CORS

e CORS = Cross-Origin Resource Sharing

For security reasons, browsers restrict cross-origin
HTTP requests initiated from scripts (among others)

Mechanism to instruct browsers that runs a resource
from origin A to run resources from origin B

e Solution

« Use reverse proxy with builtin webserver, e.g., nginx, or
user reverse proxy with external webserver.

— The client only sees the same origin for the API and
the frontend assets

Access-Control-Allow-Origin: https://foo.example

— For dev: Access-Control-Allow-Origin: *

Distributed Systems

- w.Header().Set("Access-Control-Allow-Origin",

ey

* Reverse proxy

Bezi.end service 1

Backend service 1

Backend service 2

Frontend

OOST


https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://foo.example/

10

Web Architectures
 SPA: CORS - Cross-Origin Resource Sharing

- HTTP-header based mechanism to indicate other
origins (domain, scheme, or port) from which a
browser can load assets.

« “State-of-the-art”: hydration

+ Initial HTML not with a “spinner”, but already the
first content in HTML, like SSR (e.g., next.js
server renders it for you - JavaScript)

« Further access, with API, like SPA
« Combine SSR/SPA
«  PrevelteKit: pre-SSR/SPA

— Every user sees the same page,
SSR can be pre-hydrated

Distributed Systems

* Hydration

- Best of both worlds, but adds complexity,
needs JavaScript in the backend

« Qverview: source

Server -

3

Server Rendering

55R with
(Re)hydration

“Static SSR™

C5R with
Prerendering

------------------------------------------------- Browser

E—

<f>|

Full CSR

An application
where input is
navigation requests
and the output s
HTML in response
ta them,

Entirely server-side

Dynamic HTML

Controls all aspecis.

TTi = FCP
Fully streaming

Slow TTFB
Inflexible

Infra size / cost

Grnail HTML, Hacker News

https://web.dev/articles/rendering-on-the-web UOST

Built as a Single
Page App, but all
pages prerendered
to static HTML as a
build step, and the
15 Is removed.

Buillt as If client-side

Static HTML

Delhvers static HTML

Fast TTFB Flexib e
TTi=FCP

Fully streaming

Inflexible Slow TTFB
Leads to hydration TTI>>> ECP

Usually buffered

bulld/deploy size

Docusawru 5, Metflin®

Built as a Single
Fage App. The
server prerenders
pages, but the full
app is also booted
an the client,

Bullt as client-side

Dynamic HTML
and |S/DOM

Renders pages

Infra size & |5 size

A Single Page App,
where the initial
shell/skeleton is
prerendered to
static HTML at build
time.

Client-side

Partial static HTML,
then [S/DOM

Delivers static HTML

Flexible
Fast TTFB

TTI = FCP
Limited streaming

15 slze

Gatsby, Vuepress, etc

A Single Page App.
All logic, rendering
and booting is done
on the client. HTML
i essentially just
script & style tags.

Client-side
Entirely J5/D0M
Delivers static HTML

Flexible
Fast TTFB

Tl == FCP
Na streaming

|5 slze

Most apps


https://github.com/tbocek/preveltekit/
https://dev.to/ajcwebdev/what-is-partial-hydration-and-why-is-everyone-talking-about-it-3k56#react
https://web.dev/articles/rendering-on-the-web

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	CORS
	Slide 10

