
22.03.2025

Distributed Systems (DSy)
Web Architecture

Thomas Bocek

Distributed Systems2

Learning Goals
● Lecture 6

● What are the options to build my challenge task?

● What is currently “state-of-the-art”?

● CORS

Distributed Systems3

Server-Side Rendering
● “Classic” approach - “SSR”

● Server generates HTML/JS/CSS
dynamically, sends the assets in real-time to
the browser
● User request: browser sends a request to the

web server (server-side routing)

● Server processing: server processes request
by running server-side code (e.g., C#, Java,
…),

— Fetch required data from a database or other
sources

— Server-side code can use template engines to
render the HTML - reusability

● Response: Generate the appropriate HTML,
CSS, and JavaScript for the requested page.

● Browser rendering: browser receives response
and renders page

● Big advantage: SEO, but needs the server
rendering for every request (caching!)

● Static site generation: pre-render
HTML/CSS/JS since its the same for every
user. Done only once, resp, if the content
changes.
● https://dsl.i.ost.ch → markdown to HTML

● Can also include DB access

https://dsl.i.ost.ch/

Distributed Systems4

Server side rendering (SSR) Simple Example
● Request entire page

Users

Load balancer

DB

Service
Instance 1

Service
Instance 2

HTML

Users

GET
https://dsl.i.ost.ch/lect/fs25/

<!DOCTYPE html>
<html>
<head>

<title>Distributed
Systems and Ledgers
Lab</title>

Distributed Systems5

Single Page Application SPA / CSR
● Interactions occur within a single web page

● Client page dynamically updates as the user
interacts with it, providing a smooth, app-like
experience

● Relies on JavaScript to update UI
● Initial request: browser sends a request to

receive initial HTML/JS/CSS

● Initial response: server returns a single HTML
file with CSS/JavaScript. JavaScript files
contain the application's logic

● Browser rendering: shows HTML file, typically
a spinner, then executes JavaScript

● User interactions: JavaScript manages the UI
updates. Application does not require full page
reloads. When you click a link in an SPA,
instead of making a traditional HTTP request:

— JavaScript intercepts the click event

— Prevent default browser navigation

— Update the URL using the History API

— Render new content without requesting new

HTML document

● API communication: When the SPA needs to
fetch or send data, communicates through
APIs

Distributed Systems6

Single Page Application SPA / CSR
● Use a framework: React, Angular, Vue

● Feels more app like

● The backend serves API requests only

● SEO only works if JavaScript is executed at
the SE.

● Crawler gets JavaScript code, needs to
execute, then it knows the content

— Many corner cases

● Good separation: UI in HTML/CSS/JS,
backend in /api

● Client-side routing: SPAs for navigation

● Server side routing? – default to index.html, as
client side routing “inside” index.html

Distributed Systems7

Simple Example
● Initial load: entire page

● Further requests: only updates
partially

Users

Load balancer

DB

Service
Instance 1

Service
Instance 2API

Frontend
HTML

Users

GET
https://dsl.i.ost.ch/api/xy

{"menu": {
 "id": "file",
 "value": "File",
...

Distributed Systems8

Architecture Comparison
● Server side rendering (SSR) ● Single page application (SPA), client side

rending (CSR)

Users

Load balancer

DB

Service
Instance 1

Service
Instance 2

HTML

Users

Load balancer
DB

Service
Instance 1

Service
Instance 2API

Frontend
HTML

Distributed Systems9

CORS
● CORS = Cross-Origin Resource Sharing

● For security reasons, browsers restrict cross-origin
HTTP requests initiated from scripts (among others)

● Mechanism to instruct browsers that runs a resource
from origin A to run resources from origin B

● Solution

● Use reverse proxy with builtin webserver, e.g., nginx, or
user reverse proxy with external webserver.

→ The client only sees the same origin for the API and
the frontend assets

● Access-Control-Allow-Origin: https://foo.example

→ For dev: Access-Control-Allow-Origin: *

● w.Header().Set("Access-Control-Allow-Origin",
"*")

● Reverse proxy

Users

LB

Backend service 1

Backend service 2

Frontend

Users

LB
 / R

P

Backend service 1

Backend service 2

Frontend

CORS

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://foo.example/

Distributed Systems10

Web Architectures
● SPA: CORS - Cross-Origin Resource Sharing

● HTTP-header based mechanism to indicate other
origins (domain, scheme, or port) from which a
browser can load assets.

● “State-of-the-art”: hydration

● Initial HTML not with a “spinner”, but already the
first content in HTML, like SSR (e.g., next.js
server renders it for you - JavaScript)

● Further access, with API, like SPA

● Combine SSR/SPA

● PrevelteKit: pre-SSR/SPA

— Every user sees the same page,

SSR can be pre-hydrated

● Hydration

● Best of both worlds, but adds complexity,
needs JavaScript in the backend

● Overview: source

https://web.dev/articles/rendering-on-the-web

https://github.com/tbocek/preveltekit/
https://dev.to/ajcwebdev/what-is-partial-hydration-and-why-is-everyone-talking-about-it-3k56#react
https://web.dev/articles/rendering-on-the-web

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	CORS
	Slide 10

