
15.03.2025

Distributed Systems (DSy)
Load Balancing

Thomas Bocek

Distributed Systems2

Learning Goals
● Lecture 5 (Load Balancing)

● What types of LB exists?

● Which one to pick?

● How can a LB be used for the challenge task? (DSy)

https://github.com/tbocek/DSy

Distributed Systems3

● Challenge Task Requirement

1) Load balancing with scalable service

2) Failover of a service instance

Users

Load balancer

DB

Service
Instance 1

Service
Instance 2

Load Balancing

Frontend

HTML/JS/CSS

Distributed Systems4

Load Balancing
● What is load balancing

● Distribution of workloads across multiple computing
resources
— Workloads (requests)
— Computing resources (machines)

● Distributes client requests or network load efficiently
across multiple servers [link]
— E.g., service get popular, high load on service

→ horizontal scaling

● Why load balancing
● Ensures high availability and reliability by sending

requests only to servers that are online
● Provides the flexibility to add or subtract servers as

demand dictates

Users

LB

S1

S2

S3

S4

Users

Service
Instance 1REST

Users

Load balancer

Service
Instance 1

Service
Instance 2

REST

https://www.f5.com/glossary/load-balancer

Distributed Systems5

3 Types: Hardware, Cloud-based, Software load balancer
● Hardware load balancer

● HW-LB use proprietary software, which often
uses specialized processors

— Less generic, more performance

— Some use open-source SW, e.g., HAProxy

● E.g., loadbalancer.org, F5, Cisco

● Only if you control your datacenter

● Software load balancer
● L2/L3: Seesaw
● L4: LoadMaster, HAProxy (desc), ZEVENET, Neu

trino, Balance (C), Nginx, Gobetween, Traefik
● L7: Envoy (C++), LoadMaster, HAProxy (C), ZEV

ENET, Neutrino (Java/Scala), Nginx (C), Traefik
(golang), Gobetween (golang), Eureka (Java) –
services register at Eureka

● SW vs. SW / SW vs. HW
● strong opinions, funny opinions, other opinion,

but:
“We encourage users to benchmark Envoy in
their own environments with a configuration
similar to what they plan on using in production
[source]”

● Benchmark, benchmarks
https://www.loadbalancer.org/products/hardware/

http://www.haproxy.org/
https://github.com/google/seesaw
https://freeloadbalancer.com/
https://www.haproxy.org/
https://en.wikipedia.org/wiki/HAProxy
https://github.com/zevenet/zlb
https://github.com/eBay/Neutrino/
https://github.com/eBay/Neutrino/
https://balance.inlab.net/
https://nginx.org/
https://github.com/yyyar/gobetween
https://docs.traefik.io/
https://github.com/envoyproxy/envoy
https://freeloadbalancer.com/
https://github.com/haproxy/haproxy
https://github.com/zevenet/zlb
https://github.com/zevenet/zlb
https://github.com/eBay/Neutrino/
https://nginx.org/
https://docs.traefik.io/
https://github.com/yyyar/gobetween
https://github.com/Netflix/eureka/wiki/Eureka-at-a-glance
https://www.loadbalancer.org/blog/nginx-vs-haproxy/
https://web.archive.org/web/20210516034323/https://blog.avinetworks.com/f5-vs-avi-networks
https://www.keycdn.com/support/haproxy-vs-nginx
https://www.envoyproxy.io/docs/envoy/latest/faq/performance/how_fast_is_envoy
https://www.loggly.com/blog/benchmarking-5-popular-load-balancers-nginx-haproxy-envoy-traefik-and-alb/
https://github.com/NickMRamirez/Proxy-Benchmarks
https://www.loadbalancer.org/products/hardware/

Distributed Systems6

Types Load balancing
● Cloud-based load balancer

● Pay for use

● Many offerings
— DIY? - No control over datacenter

● AWS
— Application Load Balancer ALB, (L7)

— Network Load Balancer, (L4)

— Classic Load Balancer (legacy)

● Google Cloud, (L3, L4, L7)

● Cloudflare (L4, L7)

● DigitalOcean (L4)

● Azure (L4, L7)

• Choices, choices, choices… e.g., Azure:

ht
tp

s:
//d

o
cs

.m
ic

ro
so

ft.
co

m
/e

n-
u

s/
az

u
re

/a
rc

h
ite

ct
u

re
/g

ui
d

e/
te

ch
n

o
lo

gy
-c

ho
ic

e
s/

lo
ad

-b
a

la
n

ci
ng

-o
ve

rv
ie

w

https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/elasticloadbalancing/features/
https://aws.amazon.com/elasticloadbalancing/features/
https://aws.amazon.com/elasticloadbalancing/features/
https://cloud.google.com/load-balancing/
https://www.cloudflare.com/load-balancing/
https://www.digitalocean.com/products/load-balancer/
https://azure.microsoft.com/en-us/services/load-balancer
https://docs.microsoft.com/en-us/azure/architecture/guide/technology-choices/load-balancing-overview

Distributed Systems7

Software-based load balancing
● Layer 7: HTTP(S), layer 7: DNS

● DNS Load balancing

● Round-robin DNS, very easy to setup, static, caching with
no fast changes

● Split horizon DNS - different DNS information, depending on
source of the DNS request

● Reduced Downtime, Scalable, Redundancy

● Client can decide what to do

● Negative caching impact!

● Used in bitcoin: dig dnsseed.emzy.de

● Layer 3: Anycast

● You need an AS for that, difficult and time consuming –
return the IP with lowest latency, e.g., anycast as a service,
Global Accelerator

$TTL 3D
$ORIGIN tomp2p.net.
@ SOA ns.nope.ch. root.nope.ch. (2018030404 8H 2H 4W 3H)
 NS ns.nope.ch.
 NS ns.jos.li.
 MX 10 mail.nope.ch.
 A 188.40.119.115
 TXT "v=spf1 mx -all“
www A 188.40.119.115
lb A 188.40.119.115
Lb A 152.96.80.48
$INCLUDE "/etc/opendkim/keys/mail.txt“
$INCLUDE "/etc/bind/dmarc.txt"

--- lb.bocek.ch ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 999ms
rtt min/avg/max/mdev = 0.025/0.035/0.046/0.012 ms
draft@gserver:~$ ping lb.bocek.ch
PING lb.bocek.ch (188.40.119.115) 56(84) bytes of data.
64 bytes from jos.li (188.40.119.115): icmp_seq=1 ttl=64 time=0.026 ms
--- lb.bocek.ch ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.026/0.026/0.026/0.000 ms
draft@gserver:~$ ping lb.bocek.ch
PING lb.bocek.ch (152.96.80.48) 56(84) bytes of data.
64 bytes from srifs05.ost.ch (152.96.80.48): icmp_seq=1 ttl=53 time=23.1 ms

dig lb.bocek.ch

https://en.wikipedia.org/wiki/Split-horizon_DNS
https://www.imperva.com/learn/availability/dns-load-balancing-failover/
http://www.bgplookingglass.com/list-of-autonomous-system-numbers
https://labs.ripe.net/Members/samir_jafferali/build-your-own-anycast-network-in-nine-steps
https://netactuate.com/anycast-delivery-platform/
https://medium.com/faun/building-a-high-available-anycast-service-using-aws-global-accelerator-450fc8c4fd1e

Distributed Systems8

Load Balancing Algorithms
● Load Balancing Algorithms (visualized)

● Round robin – loop sequentially

— Simple algorithm, often default

— But may drop requests on congested nodes

● Weighted round robin – some server are more
powerful
— You can put weighted in from of everything

— More powerful machines gets more work

— But high variance in server load may drop
requests

● Least connections – fewest current
connections to clients

— Keep track of outstanding requests

— Send work to the one with the least outstanding

requests

— But not the best for latency

● Peak exponentially weighted moving average

— Considers latency

— Complexity increases

● Others e.g., : ip_hash, least_time, random
(nginx), uri_hash, cookie (caddy)

https://samwho.dev/load-balancing/
https://docs.nginx.com/nginx/admin-guide/load-balancer/http-load-balancer/
https://caddyserver.com/docs/caddyfile/directives/reverse_proxy#load-balancing

Distributed Systems9

Load Balancing Algorithms
● Easiest: round-robin / random

● Make sure your services are stateless!

● Stateless ~ don’t store anything in the service

● If you do, you need a stick session
(try to avoid this) - same user to same service

● Eg., cookie, ip_hash – send to same machine

● Health checks: tell your load balancer if you
are running low on resources

● Active: send active probes, e.g., every 3s

● OOB – out of band (API to check health), e.g.,
necessary with DB, as connection may be OK,
but database not

● Passive: only check with request

● Inline within service

● Different behavior:

— Nginx: passive, caches request, so if an upstream

fails, it uses another.

— Caddy: passive, does not cache, but marks

upstream as failed for the next request.

● L7 load balancing is more resource‑intensive
than packet‑based L4

● Terminates TLS and HTTP

Distributed Systems10

Traefik
• Open Source, software-based load balancer:

https://github.com/traefik/traefik

• “The Cloud Native Edge Router”

• L4/L7 load balancer

• Golang, single binary

• Authentication

• Experimental HTTP/3 support

• Dashboard

• Official traefik docker image

https://github.com/traefik/traefik
https://hub.docker.com/_/traefik

Distributed Systems11

Traefik
• Run it: ./traefik

• Now lets configure

• Redirect 8888 to access dashboard

• http://127.0.0.1:8888/dashboard/

[entryPoints.web]
address = ":80"

[api]
dashboard = true

[providers.file]
filename =
"dynamic_load.toml"

[log]
#filePath = "traefik.log"
level = "INFO"

[accessLog] [http.routers.dashboard]
rule = "PathPrefix(`/api`) ||
PathPrefix(`/dashboard`)"
entrypoints = ["web"]
service = "api@internal"
middlewares = ["auth"]

[http.middlewares.auth.basicAuth]
users = ["test:
$apr1$H6uskkkW$IgXLP6ewTrSuBkTrqE8wj/"]

[http.routers.coinservice]
rule = "PathPrefix(`/`)"
entrypoints = ["web"]
service = "coinservice"

[[http.services.coinservice.loadBalancer.servers]]
url = "http://127.0.0.1:8080"
[[http.services.coinservice.loadBalancer.servers]]
url = "http://127.0.0.1:8081"

http://127.0.0.1:8888/dashboard/
http://127.0.0.1:8080/

Distributed Systems12

Traefik
● Labels, configure inside docker-compose, no

extra project / Dockerfile

● Define 2 services

● Or 1 service and run:
docker-compose up --scale go-
service=5

traefik:
 image: traefik:latest
 command:
 - "--api.dashboard=true"
 - "--providers.docker=true"
 - "--providers.docker.exposedbydefault=false"
 - "--entrypoints.web.address=:80"
 ports:
 - "80:80"
 - "8080:8080" # Dashboard
 volumes:
 - /var/run/docker.sock:/var/run/docker.sock:ro
 labels:
 - "traefik.enable=true"
 - "traefik.http.routers.dashboard.rule=PathPrefix(`/dashboard`) || PathPrefix(`/api`)"
 - "traefik.http.routers.dashboard.service=api@internal"
 - "traefik.http.routers.dashboard.entrypoints=web"

Distributed Systems13

Service
● As a start, stateful service

● Golang

● Stickiness with cookies

● Let's add a health check

● Weighted round robin

● load balance between services and not
between servers (example)

[http.services.coinservice.loadBalancer.healthCheck]
path = "/health”
interval = "3s"
timeout = "1s"

[http.services.coinservice.loadBalancer.sticky.cookie]

https://docs.traefik.io/routing/services/#weighted-round-robin-service

Distributed Systems14

Caddy
• Configuration: dynamic

• Static: Caddyfile

• One-liners:

• Quick, local file server: caddy file-server

• Reverse proxy: caddy reverse-proxy --from
example.com --to localhost:9000

• Open Source, software-based load balancer:
https://github.com/caddyserver/caddy

• “Caddy 2 is a powerful, enterprise-ready, open
source web server with automatic HTTPS
written in Go”

• L7 load balancer

• Reverse proxy

• Static file server

• HTTP/1.1, HTTP/2, and experimental HTTP/3

• Caddy on docker hub
:7070
reverse_proxy 127.0.0.1:8081 127.0.0.1:8080 {
 unhealthy_status 5xx
 fail_duration 5s
}

https://caddyserver.com/
https://github.com/caddyserver/caddy
https://caddyserver.com/docs/caddyfile/directives/reverse_proxy
https://hub.docker.com/_/caddy

Distributed Systems15

NGINX
● Free + commercial version

● Fast webserver, ~35% market share

● Acquired by F5 Networks (slide 7) in 2019

● HTTP proxy, Mail proxy, reverse proxy, load
balancer

● Reverse proxy vs. load balancer

● No active health checks, no sticky sessions
(not usable in prod env) [source]

● Performance tuning – some ideas

• Benchmarks, benchmarks

Users

LB
 / R

P

Backend service 1

Backend service 2

Frontend

https://w3techs.com/technologies/details/ws-nginx
https://www.nginx.com/products/nginx/load-balancing/
https://github.com/denji/nginx-tuning
https://help.dreamhost.com/hc/en-us/articles/215945987-Web-server-performance-comparison
https://flakebi.de/projects/proxies/

Distributed Systems16

NGINX
● Add configuration

● Health check

● Inband/passive (active - commercial)

● Default: round robin

● Least connected (least_conn)

● Sticky (ip_hash), cookie (commercial)

● Weighted balancing (weight=1)

#/tmp/nginx.conf

events {
 worker_connections 1024;
}

http {
 upstream coinservice {
 #least_conn;
 server 127.0.0.1:8080 weight=1;
 server 127.0.0.1:8081;
 }

 server {
 listen 7070 default_server;
 listen [::]:7070 default_server;
 location / {
 proxy_pass http://coinservice;
 }
 # You may need this to prevent return 404
recursion.
 location = /404.html {
 internal;
 }
 }
}

https://docs.nginx.com/nginx/admin-guide/load-balancer/http-health-check/#active-health-checks
https://docs.nginx.com/nginx/admin-guide/load-balancer/http-load-balancer/#enabling-session-persistence

Distributed Systems17

HAproxy
● L4 and L7 load balancer and reverse proxy

● Open source option: commercial support (HAProxy
Technologies)

● Widely used: stack overflow, github, …

● Performance: fast, small Atom server in 2011 ~2300
SSL TPS
● 2017: tuned to 2.3m SSL connections (32cores/64GB

RAM)

● Install: apk add haproxy

● Configure and run: /etc/init.d/haproxy start
● Algorithms: roundrobin, leastconn, source
● Sticky session: appsession
● check → health checks (inband)

● Primary/secondary

● app1 by default, 3 checks
at 10s interval fail, app2
will be used:

#/etc/haproxy/haproxy.cfg
defaults
 retries 3
 timeout client 30s
 timeout connect 4s
 timeout server 30s

frontend www
 bind :80
 mode http
 default_backend coinservice

backend coinservice
 mode http
 balance roundrobin
 server app1 127.0.0.1:8080 check
 server app2 127.0.0.1:8081 check

balance roundrobin
server app1 127.0.0.1:8080 check inter 10s fall 3
server app2 127.0.0.1:8081 check backup

https://git.haproxy.org/?p=haproxy.git
https://www.haproxy.com/blog/benchmarking_ssl_performance/
https://www.freecodecamp.org/news/how-we-fine-tuned-haproxy-to-achieve-2-000-000-concurrent-ssl-connections-d017e61a4d27/

Distributed Systems18

Dockerfile / docker compose
● Example: caddy as LB, go as Service

● docker-compose up --scale services=5
● Nginx requires more configuration

#docker-compose.yml
version: '3'
services:
 services:
 build: .
 ports:
 - "8080-8085:8080"
 lb:
 image: caddy
 ports:
 - "7070:7070"
 volumes:
 - ./Caddyfile:/etc/caddy/Caddyfile

#Caddyfile
:7070
reverse_proxy * {
 to http://dsy-services-1:8080
 to http://dsy-services-2:8080
 to http://dsy-services-3:8080
 to http://dsy-services-4:8080
 to http://dsy-services-5:8080

 lb_policy round_robin
 lb_try_duration 1s
 lb_try_interval 100ms
 fail_duration 10s
 unhealthy_latency 1s
}

Distributed Systems19

Dockerfile / docker compose

● Docker compose use its own DNS

● Within docker compose it knows the names:
”serviceX”, “lb” → ping

● serviceX if in the same network

— Different networks – no connection

● External port

● Needs mapping to reach component from
outside → reachable via localhost

● Internal port, can be reached in the same
network – use DNS, localhost does not work

#docker-compose.yml
version: '3'
services:
 serviceX:
 build: .
 ports:
 - "9090:8080"
 lb:
 image: caddy
 ports:
 - "7070:7070"

#docker-compose.yml
version: '3'
services:
 serviceX:
 build: .
 ports:
 - "9090:8080"
 networks:
 - backend
 - database

networks:
 frontend:
 backend:
 database:

https://docs.docker.com/compose/how-tos/networking/

	Slide 1
	Slide 2
	Load Balancing
	Load balancing
	3 Types: Hardware, Cloud-based, Software load balancer
	Types Load balancing
	Software-based load balancing
	Load balancing L4/L7
	Slide 9
	Traefik
	Traefik (2)
	Slide 12
	Service
	Caddy
	NGINX
	NGINX (2)
	HAproxy
	Dockerfile
	Slide 19

