OST

Eastern Switzerland
University of Applied Sciences

Distributed Systems (DSy)

Load Balancing

Thomas Bocek

LERS12025

Learning Goals

* Lecture 5 (Load Balancing)
« What types of LB exists?
+ Which one to pick?

How can a LB be used for the challenge task? (DSy)

2 | Distributed Systems O OST

https://github.com/tbocek/DSy

Load Balancing

* Challenge Task Requirement
1) Load balancing with scalable service

2) Failover of a service instance

Service
Instance 1

Jaouefeq peo

Service
Instance 2

HTMDMJS/CSS

Frontend

3 | Distributed Systems O OST

Load Balancing st e

 What is load balancing
Distribution of workloads across multiple computing
resources
- Workloads (requests)
— Computing resources (machines)

Distributes client requests or network load efficiently
across multiple servers [link]

- E.g., service get popular, high load on service

Service
Instance 1
Service
Instance 2

OOST

- horizontal scaling

Jaouejeq peo

* Why load balancing

Ensures high availability and reliability by sending
requests only to servers that are online

Provides the flexibility to add or subtract servers as
demand dictates

Users

4 | Distributed Systems

https://www.f5.com/glossary/load-balancer

3 Types: Hardware, Cloud-based, Software load balancer

e Hardware load balancer Software load balancer

_ _ L2/L3: Seesaw
- HW-LB use proprietary software, which often

. - L4: LoadMaster, HAProxy Cgdesc), ZEVENET, Neu
uses specialized processors trino, Balance (C), Nginx; Gobetween, Traefik
_ i - L7: Envoy (C++), LoadMaster, HAProxy (C), ZEV
Less generic, more performance ENET, Ngu(trino)(Java/Scala), Nginx (C), %’r%eflk
- Some use open-source SW, e.g., HAProxy (golang), Gobetween (golang), Eureka (Java) —
services register at Eureka
- E.g., loadbalancer.org, F5, Cisco « SWvs. SW/SW vs. HW
» Only if you control your datacenter - strong opinions, funny opinions, other opinion,
but:

“We encourage users to benchmark Envoy in
their own environments with a configuration
similar to what they plan on using in production
[source]”

https://www.loadbalancer.org/products/hardware/ * Benchmark, benchmarks

5 | Distributed Systems O OST

http://www.haproxy.org/
https://github.com/google/seesaw
https://freeloadbalancer.com/
https://www.haproxy.org/
https://en.wikipedia.org/wiki/HAProxy
https://github.com/zevenet/zlb
https://github.com/eBay/Neutrino/
https://github.com/eBay/Neutrino/
https://balance.inlab.net/
https://nginx.org/
https://github.com/yyyar/gobetween
https://docs.traefik.io/
https://github.com/envoyproxy/envoy
https://freeloadbalancer.com/
https://github.com/haproxy/haproxy
https://github.com/zevenet/zlb
https://github.com/zevenet/zlb
https://github.com/eBay/Neutrino/
https://nginx.org/
https://docs.traefik.io/
https://github.com/yyyar/gobetween
https://github.com/Netflix/eureka/wiki/Eureka-at-a-glance
https://www.loadbalancer.org/blog/nginx-vs-haproxy/
https://web.archive.org/web/20210516034323/https://blog.avinetworks.com/f5-vs-avi-networks
https://www.keycdn.com/support/haproxy-vs-nginx
https://www.envoyproxy.io/docs/envoy/latest/faq/performance/how_fast_is_envoy
https://www.loggly.com/blog/benchmarking-5-popular-load-balancers-nginx-haproxy-envoy-traefik-and-alb/
https://github.com/NickMRamirez/Proxy-Benchmarks
https://www.loadbalancer.org/products/hardware/

6

Types Load balancing

* Cloud-based load balancer
- Pay for use

- Many offerings
— DIY? - No control over datacenter

- AWS
— Application Load Balancer ALB, (L7)
— Network Load Balancer, (L4)
— Classic Load Balancer (legacy)

« Google Cloud, (L3, L4, L7)
« Cloudflare (L4, L7)

« DigitalOcean (L4)

- Azure (L4, L7)

Distributed Systems

* Choices, choices, choices...

P

e.g., Azure:

e ™ e ™

/ . / . \

[Web application? | No [Internetfacing | No _

‘\ (HTTP/HTTPS) | > application? | 15 Azure Load Balancer
N) \\ . \

[

Yes No
Yes

GchaI/ Deployed in |
\ multlple regions? “‘

Traffic Manager +
Azure Load Balancer

‘14 |ntErnetfac|ng\‘ e 1 g Application Gatewa
\ application? / L APP y

e

/ Do you require SSL offload or \

A Y
‘ Gﬁzftl.;f:?:;ﬁim e —>| application-layer processing per }——D—
\ J

/ request?
/

No
No ;

—
7

S~

PaaS

| (App Service,
\'\.7 _d Functions)

‘\
\ Hosting — Paas, laaS, AKS

laaS (VMs)

Yes

14 Do you require N No

- performance
acceleration? /
AN /

Azure Front Door +

Application Gateway
m
AKS Azure Front Door +

i Application Gateway m %
ingress controller

M Azure Front Door +
@l Azure Load Balancer
gl Application Gateway

https://docs.microsoft.com/en-us/azure/architecture/quide/technology-choices/load-balancing-overview

https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/elasticloadbalancing/features/
https://aws.amazon.com/elasticloadbalancing/features/
https://aws.amazon.com/elasticloadbalancing/features/
https://cloud.google.com/load-balancing/
https://www.cloudflare.com/load-balancing/
https://www.digitalocean.com/products/load-balancer/
https://azure.microsoft.com/en-us/services/load-balancer
https://docs.microsoft.com/en-us/azure/architecture/guide/technology-choices/load-balancing-overview

Software-based load balancing

$TTL 3D
$ORIGIN tomp2p.net.
o Layer 7: HTTP(S), layer 7. DNS @ SOA ns.nope.ch. root.nope.ch. (2018030404 8H 2H 4W 3H)
_ NS ns.nope.ch.
* DNS Load balancing NS ns.jos.li.
MX 10 mail.nope.ch.
: : : : A 188.40.119.115
« Round-robin DNS, very easy to setup, static, caching with TXT "v=spfl mx -all”
no fast Changes www A 188.40.119.115
1b A 188.40.119.115
Lb A 152.96.80.48

« Split horizon DNS - different DNS information, depending on SINCLUDE " /etc/opendkin/keys/mail. txt”
source of the DNS request $INCLUDE "/etc/bind/dmarc.txt"

* Reduced Downtime, Scalable, Redundancy
dig lb.bocek.ch

- Client can decide what to do

« Negative caching impact! --- 1b.bocek.ch ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 999ms

« Used in bitcoin: dig dnsseed.emzy.de rtt min/avg/max/mdev = 0.025/0.035/0.046/0.012 ms
draft@gserver:~$ ping 1lb.bocek.ch

) PING 1b.bocek.ch (188.40.119.115) 56(84) bytes of data.
* Layer 3: Anycast 64 bytes from jos.li (188.40.119.115): icmp_seq=1 tt1=64 time=0.026 ms
o]) --- 1lb.bocek.ch ping statistics ---
« You need an AS for that, difficult and time consuming — 1 packets transmitted, 1 received, 0% packet loss, time @ms

: . rtt min/avg/max/mdev = ©.026/0.026/0.026/0.000 ms
return the IP with lowest latency, e.g., anycast as a Service, gy, frggserver:~$ ping 1b.bocek. ch

Global Accelerator PING lb.bocek.ch (152.96.80.48) 56(84) bytes of data.
64 bytes from srifs@5.ost.ch (152.96.80.48): icmp_seq=1 ttl=53 time=23.1 ms

7 | Distributed Systems O OST

https://en.wikipedia.org/wiki/Split-horizon_DNS
https://www.imperva.com/learn/availability/dns-load-balancing-failover/
http://www.bgplookingglass.com/list-of-autonomous-system-numbers
https://labs.ripe.net/Members/samir_jafferali/build-your-own-anycast-network-in-nine-steps
https://netactuate.com/anycast-delivery-platform/
https://medium.com/faun/building-a-high-available-anycast-service-using-aws-global-accelerator-450fc8c4fd1e

Load Balancing Algorithms

* Load Balancing Algorithms (visualized) — Send work to the one with the least outstanding
- Round robin — loop sequentially requests
— Simple algorithm, often default — But not the best for latency
— But may drop requests on congested nodes - Peak exponentially weighted moving average
+ Weighted round robin — some server are more ~ Considers latency
powerful

: — Complexity increases
— You can put weighted in from of everything ety

~ More powerful machines gets more work - Others e.g., : ip_hash, least_time, random

nginx), uri hash, cookie (cadd
— But high variance in server load may drop (nginx) — (y)
requests

« Least connections — fewest current
connections to clients

— Keep track of outstanding requests

8 | Distributed Systems O OST

https://samwho.dev/load-balancing/
https://docs.nginx.com/nginx/admin-guide/load-balancer/http-load-balancer/
https://caddyserver.com/docs/caddyfile/directives/reverse_proxy#load-balancing

9

Load Balancing Algorithms

* Easiest: round-robin / random

Make sure your services are stateless!

e Stateless ~ don't store anything in the service

If you do, you need a stick session
(try to avoid this) - same user to same service

Eg., cookie, ip_hash — send to same machine

* Health checks: tell your load balancer if you
are running low on resources

Active: send active probes, e.g., every 3s

OOB - out of band (API to check health), e.qg.,
necessary with DB, as connection may be OK,
but database not

Distributed Systems

+ Passive: only check with request
« Inline within service

« Different behavior:

— Nginx: passive, caches request, so if an upstream
fails, it uses another.

— Caddy: passive, does not cache, but marks
upstream as failed for the next request.

L7 load balancing is more resource-intensive
than packet-based L4

« Terminates TLS and HTTP

OOST

Traefik

* Open Source, software-based load balancer:

https://qgithub.com/traefik/traefik

- “The Cloud Native Edge Router”
L4/L7 load balancer

Golang, single binary

Authentication

Experimental HTTP/3 support

 Dashboard

* Official traefik docker image

10 | Distributed Systems

=] Entrypoints

:8080

:8080

@ HTTP Router

® TS

tr

& HTTP Middleware

AddPrefix

f

4 Service

ServiceName

£ Middlewares 10

addPrefix
((addPrefixTest@docker |
basicAuth

O~ O
|.’a.‘1‘nnf|\c

addPrefix

https://github.com/traefik/traefik
https://hub.docker.com/_/traefik

Traefik

* Run it; ./traefik

* Now lets configure

* Redirect 8888 to access dashboard

| Lap1]

[entryPoints.web
address = ":80"

dashboard =

filename =

"dynamic_load.toml"

[log]

#filePath = "traefik.log"
level = "INFO"

traef

[providers.file]

[http.routers.dashboérd]

rule = "PathPrefix(/api’) ||
PathPrefix(/dashboard)"

service = "api@internal"

[http.middlewares.auth.basicAuth]

$apri1$HeuskkkW$IgXLP6ewTrSuBKTrqE8w] /"]

[http.routers.coinservice]
rule = "PathPrefix(/)"

[accesslLog]
* http://127.0.0.1:8888/dashboard/
entrypoints = ["web"]
RouTERS
middlewares = ["auth"]
SERVER 1
|t users = ["test:
ServICE 1]
= LoapBALANCER
ReQUESTS STICKINESS \ "
wA,N_)f"\ — ENTRYPOINTS ull B ROUTERS entIypOintS — ["Web n]
; T service = "coinservice"
\\%“ﬂ """""" R

PassHosTHeADER W

SERVER

] (10Dd L d
rl = "http://127.0.0.1:8080"
] (10Dd L d
url = "http://127.0.0.1:8081" f N 2 |

http://127.0.0.1:8888/dashboard/
http://127.0.0.1:8080/

Traefik

* Labels, configure inside docker-compose, no * Define 2 services

extra project / Dockerfile .
Pro) * Or 1 service and run:

traefik docker-compose up --scale go-
Image service=5

command
"--api.dashboard=true"
"--providers.docker=true"
"--providers.docker.exposedbydefault=false"
"--entrypoints.web.address=:80"

ports
"80:80"
"8080:8080" # Dashboard

volumes

labels
"traefik.enable=true"
"traefik.http.routers.dashboard.rule=PathPrefix('/dashboard’) | | PathPrefix('/api’)"

"traefik.http.routers.dashboard.service=api@internal”
"traefik.http.routers.dashboard.entrypoints=web"

12 | Distributed Systems O OST

13

Service
* As a start, stateful service

- Golang
e Stickiness with cookies
e Let's add a health check

* Weighted round robin

« |load balance between services and not
between servers (example)

Distributed Systems

[http.services.coinservice.loadBalancer.healthCheck]
path = "/health”

interval = "3s"

timeout = "1s"

[http.services.coinservice.loadBalancer.sticky.cookie]

= 1

Host: 127.0.0.1

648/ 161 B transferre Upgra de -Insecure -Re quests: 1

W ©J inspector (3] Console [Debugger %1} Network {} Style Editor () Performance ») 0] *++ X
m I QaQ e .pf[';l';'L:}L_]ﬂ .DI'}JHL’ Cache No Throttling 2 HAR 2
Al HTML CSS JS XHR Fonts Images Media WS Other
S M D. File Ca. T Tr. S [l Headers Cookies Params Response Timings Stack Trace
doc.. ht 161.. 43 Request Headers (4058) Raw Headers
Accept: text/htrmla pplication/xhtmil+xm..ml,q=0.9,ima ge/webp,*/*:q=0.8
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;qg
] ntrol: max-age

https://docs.traefik.io/routing/services/#weighted-round-robin-service

Caddy

* Configuration: dynamic

- Static: Caddyfile

e One-liners:

* Quick, local file server: caddy file-server

* Reverse proxy: caddy reverse-proxy --from
example.com --to localhost:9000

2} Caddy

Open Source, software-based load balancer:
https://github.com/caddyserver/caddy

: 7070

reverse_proxy 127.0.0.1:8081 127.0.0.1:8080 {
unhealthy_status 5xx
fail_duration 5s

}

14 | Distributed Systems

- “Caddy 2 is a powerful, enterprise-ready, open
source web server with automatic HTTPS
written in Go”

L7 load balancer

* Reverse proxy

- Static file server

- HTTP/1.1, HTTP/2, and experimental HTTP/3
« Caddy on docker hub

OOST

https://caddyserver.com/
https://github.com/caddyserver/caddy
https://caddyserver.com/docs/caddyfile/directives/reverse_proxy
https://hub.docker.com/_/caddy

NGINX

* Free + commercial version

* Fast webserver, ~35% market share Backend service 1
* Acquired by F5 Networks (slide 7) in 2019 :&; Backend service 2
* HTTP proxy, Mail proxy, reverse proxy, load Users

balancer * Benchmarks, benchmarks

* Reverse proxy vs. load balancer

* No active health checks, no sticky sessions Requests Per Second
(not usable in prod env) [source] oy

* Performance tuning — some ideas

sec

15 | Distributed Systems ' ; = - r

https://w3techs.com/technologies/details/ws-nginx
https://www.nginx.com/products/nginx/load-balancing/
https://github.com/denji/nginx-tuning
https://help.dreamhost.com/hc/en-us/articles/215945987-Web-server-performance-comparison
https://flakebi.de/projects/proxies/

16

NGINX

* Add configuration
* Health check
+ Inband/passive (active - commercial)

* Default: round robin
- Least connected (least_conn)
- Sticky (ip_hash), cookie (commercial)

- Weighted balancing (weight=1)

Distributed Systems

#/tmp/nginx.conf

events {
worker_connections 1024;

}

http {
upstream coinservice {
#least_conn;
server 127.0.0.1:8080 weight=1;
server 127.0.0.1:8081;
}

server {
listen 7070 default_server;
listen [::]:7070 default_server;
location / {
proxy_pass http://coinservice;
}
You may need this to prevent return 404
recursion.
location = /404 .html {
internal;
}
}

}
OOST

https://docs.nginx.com/nginx/admin-guide/load-balancer/http-health-check/#active-health-checks
https://docs.nginx.com/nginx/admin-guide/load-balancer/http-load-balancer/#enabling-session-persistence

HAproxy

* L4 and L7 load balancer and reverse proxy - appl by default, 3 checks

« Open source option: commercial support (HAProxy at 10s interval fail, app?2

Open source, _ w2 HAPROXY
_ _ will be used:

« Widely used: stack overflow, github, ...
e Performance: fast, small Atom server in 2011 ~2300 balance roundrobin

SSL TPS server appl 127.0.0.1:8080 check inter 10s fall 3

server app2 127.0.0.1:8081 check backup

« 2017: tuned to 2.3m SSL connections (32cores/64GB
RAM)

#/etc/haproxy/haproxy.cfg
defaults
retries 3
timeout client 30s
timeout connect 4s

e Install: apk add haproxy

e Configure and run: /etc/init.d/haproxy start

- Algorithms: roundrobin, leastconn, source timeout server 30s
- Sticky session: appsession frontend www
: bind : 80
- check - health checks (inband) mode http
default_backend coinservice

* Primary/secondary

backend coinservice
mode http
balance roundrobin

server appl 127.0.0.1:8080 check
17 | Distributed Systems server app2 127.0.0.1:8081 checOOST

https://git.haproxy.org/?p=haproxy.git
https://www.haproxy.com/blog/benchmarking_ssl_performance/
https://www.freecodecamp.org/news/how-we-fine-tuned-haproxy-to-achieve-2-000-000-concurrent-ssl-connections-d017e61a4d27/

18

Dockerfile | docker compose

 Example: caddy as LB, go as Service

docker-compose up --scale services=5
Nginx requires more configuration

#docker-compose.yml
version: '3’
services:

services:
build:
ports:
- "8080-8085:8080"
1b:
image: caddy
ports:
- "7070:7070"
volumes:
- ./Caddyfile:/etc/caddy/Caddyfile

#Cad
1707
reve
to
to
to
to
to

1b
1b
1b
fa
un

dyfile

0

rse_proxy * {
http://dsy-services-1:8080
http://dsy-services-2:8080
http://dsy-services-3:8080
http://dsy-services-4:8080
http://dsy-services-5:8080

_policy round_robin
_try_duration 1s
_try_interval 100ms
il _duration 10s
healthy_latency 1s

Distributed Systems

OOST

Dockerfile | docker compose

#docker-compose.yml
version: '3’
SRl G

serviceX:

é@90 8080
fmage: caddy
portge
“Trore

* Docker compose use its own DNS

"serviceX”, “Ib” - ping

serviceX if in the same network

Different networks — no connection

19 | Distributed Systems

Within docker compose it knows the names:

* External port

outside — reachable via localhost

Needs mapping to reach component from

* Internal port, can be reached in the same
network — use DNS, localhost does not work

#docker-compose.yml
version: '3’
services:
serviceX:
build: .
ports:
- "9090:8080"
networks:
- backend
- database

networks:
frontend:
backend:

database:

OOST

https://docs.docker.com/compose/how-tos/networking/

	Slide 1
	Slide 2
	Load Balancing
	Load balancing
	3 Types: Hardware, Cloud-based, Software load balancer
	Types Load balancing
	Software-based load balancing
	Load balancing L4/L7
	Slide 9
	Traefik
	Traefik (2)
	Slide 12
	Service
	Caddy
	NGINX
	NGINX (2)
	HAproxy
	Dockerfile
	Slide 19

