
28.02.2025

Distributed Systems (DSy)
Monorepos / Polyrepos

Thomas Bocek



Distributed Systems2

Learning Goals
● Lecture 3 (Repositories)

● What is a monorepo, what is a polyrepo?

● When to use which type?



Distributed Systems3

Project Setup
● Project setup the wrong way:

● https://github.com/tbocek/DSy

● Everything (Java, Golang, Javascript) flat in 
one directory – do not do this

● But, keep it simple at the start, follow best 
practices [example]
● Java: src/main/java – default in maven/gradle

● Golang: everything in root directory [example]

● Javascript/Typescript

— Depends on type: backend / frontend / plugin

— src, public, tests [1, 2, 3, 4]

https://github.com/tbocek/DSy
https://github.com/golang-standards/project-layout/issues/117
https://github.com/julienschmidt/httprouter
https://medium.com/@jayjethava101/node-js-project-structure-best-practices-and-example-for-clean-code-3e1f5530fd3b
https://dev.to/mr_ali3n/folder-structure-for-nodejs-expressjs-project-435l
https://www.geeksforgeeks.org/folder-structure-for-a-node-js-project/
https://blog.webdevsimplified.com/2022-07/react-folder-structure/


Distributed Systems4

Project Setup
● General rules

1) Be consistent

2) Other projects always prefer other structures

3) A perfect structure does not exist

● Split up

● Backend, frontend in separate repositories

● ~1 technology per split for simple projects

— Most likely you won’t have a frontend mix of 

frontend technologies e.g., Angular with Vue

— Sometimes you have a script directory, with 

different languages (bash, javascript)

● More complex setups?

— Multiple backends, multiple packages



Distributed Systems5

Monorepo
● One repository for all projects (aka onerepo or unirepo)

● 1 sub-directory with frontend, 1 sub-directory with backend, 
etc.

● Tools e.g., turborepo - update dependencies, hoisting

● Tech independent: Bazel, Buck2

● Examples

● Simform: started with monorepo, switched to mulirepo, now 
with hybrid approach “you can’t blindly follow any approach”

● Google, Facebook, Twitter: use monorepos 
(others do not)

● Flatfeestack: used hybrid approach (scripts, submodules), 
now monorepo (e.g.) 

https://codefresh.io/continuous-integration/using-codefresh-with-mono-repos/ 

https://turbo.build/repo/docs
https://www.jonathancreamer.com/inside-the-pain-of-monorepos-and-hoisting/
https://bazel.build/
https://buck2.build/
https://www.simform.com/blog/monorepo-vs-polyrepo/
https://medium.com/@mattklein123/monorepos-please-dont-e9a279be011b
https://github.com/flatfeestack/flatfeestack
https://github.com/flatfeestack/flatfeestack/tree/main/analyzer
https://codefresh.io/continuous-integration/using-codefresh-with-mono-repos/


Distributed Systems6

Polyrepo
● Multiple repositories for a project

● Frontend in a different repository than the 
backend

● Example: https://github.com/flatfeestack 

— Wip, not ready to make it public…

— Frontend: Svelte, npm

— Backend: Golang

● Other names: manyrepo or multirepo

● Sync via git submodules or via bash script
● Submodules: can also be used as dependency 

management

● Sync with repo

https://github.com/flatfeestack
https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://github.com/joelparkerhenderson/monorepo-vs-polyrepo#could-you-get-the-best-of-both-worlds-by-having-a-monorepo-of-submodules
https://gerrit.googlesource.com/git-repo/


Distributed Systems7

Pro/Cons - Opinion
● Monorepo

● Tight coupling of projects

— E.g., generating openapi.yml from backend, 

generate types for frontend → simply copy

● Everyone sees all code / commits

● Encourages code sharing within organization

● Scaling: large repos, specialized tooling

● Polyrepo

● Loose coupling of projects

— If you want to generate openapi.yml, you need 

access from the backend repository to the 

frontend (e.g., curl+token)

● Fine grained access control

● Encourages code sharing across organizations

● Scaling: many projects, special coordination

K
ey

 D
iff

er
en

ce
s 

https://github.com/joelparkerhenderson/monorepo-vs-polyrepo#key-differences


Distributed Systems8

Tools
● Overview: https://monorepo.tools

● Pnpm workspace

● Turbo / Lerna/Nx – JS/TS, Gradle monorepo 
support, otherwise you need to do it 
manually, or write a script / make / just
● Caching!

● E.g., Bazel: (big projects) → define 
input/output → if no change in input, do not run 
command

● But e.g., Golang, Rust have extensive caching 
mechanisms 

● Caching with docker in upcoming lecture

● Project dependencies: generating types

● Many tools competing in the same space

● Complexity!

● Is build speed slow? Rsbuild ~ 211ms

https://monorepo.tools/
https://rsbuild.dev/
https://github.com/tbocek/preveltekit/


Distributed Systems9

Examples
● Turborepo

● npx create-turbo@latest my-turborepo

● npx turbo build

● npx turbo dev / npx turbo dev --filter=web

● Add package with separate package.json...

● pnpm workspace

● Another solution for packages

● Buck2: tried to run a simple tutorial

● Error after error… complexity!

https://buck2.build/docs/about/getting_started/


Distributed Systems10

Pro/Cons - Opinion
● Opinion: Accenture - “From my experience, 

for a smaller team, starting with mono-repo 
is always safe and easy to start. Large and 
distributed teams would benefit more from 
poly-repo”

● My opinion: tightly-coupled projects: 
monorepo, loosely-coupled: polyrepo

● Challenge task: I would chose a monorepo

● Upcoming lectures

● Dependency hell

● Docker / docker compose

● Supply chain attacks!

http://web.archive.org/web/20210202161006/https://www.accenture.com/us-en/blogs/software-engineering-blog/how-to-choose-between-mono-repo-and-poly-repo

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

