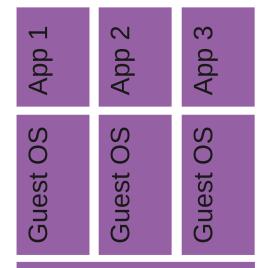


Learning Goals

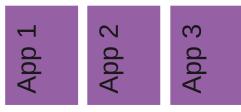
- Lecture 3 (Containers and VMs)
 - What is the difference of VM / Container?
 - Next segment: practical examples


Virtualization

- Creation of a virtual machine that acts like a real computer with an operating system [source]
 - Host machine: machine where the virtualization software runs
 - Guest machine: virtual machine
- Hypervisor runs virtual machines
 - Type 1: bare-metal e.g., Xen
 - "We built Amazon EC2 using a virtual machine monitor by the name of Xen" [source]
 - Type 2: hosted e.g., VirtualBox
- Run unmodified OS with Intel VT-x and AMD-V, or paravirtualized if not present
 - E.g., VM should not access memory directly

- Needs to be the same architecture
 - Otherwise use emulation, e.g., QEMU
 - Ubuntu on a RISC-V processor
 - Qemu, opensbi, u-boot
 - Gaming console emulators: Snes9x, Mupen64 Plus, Switch [defunct]
- Virtual desktop infrastructure (VDI)
 - Interact with a virtual machine over a network
- Containers
 - Isolated user-space instances
 - OS support: isolations

Virtualization - Visualization

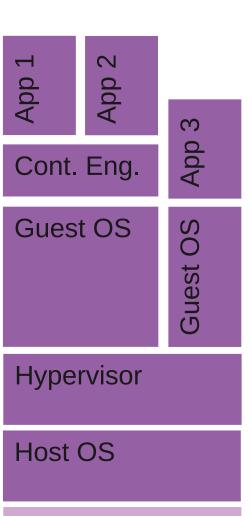


Hypervisor

Host OS

Physical machine

Virtual machines



Container Engine

Host OS

Physical machine

Container

Physical machine

Both

Comparison

Container

- + Reduced size of snapshots 2MB vs 45MB
- + Quicker spinning up apps
- + / Available memory is shared
- + / Process-based isolation (share same kernel)

Use case: complex application setup, with container less complex configuration

Providers: ECS, Google Cloud Run, Digital Ocean App Platform, ...

Virtual Machine

- + App can access all OS resources
- + Live migrations
- + / Pre allocates memory
- + / Full isolation

Use case: better hardware utilization / resource sharing

EC2, Virtual Machines, Compute Engine, Droplets

Prices / VM on e.g., AWS

Virtual Machines

- On-Demand
 - Machine
 - Data transfer
 - IP address
- Spot instances (discount when not needed)
- Reserved Instances
- Comparison, comparison
 - Not easy to compare
 - Optimize for cost → provider changes cost structure, you need to adapt again for optimizing

On-Demand Pricing							
Instance Type	AWS	Azure	Google	AWS pricing (per hour)	Azure Pricing (per hour)	Google pricing (per hour)	
General purpose	m6g.xlarge	B4MS	e2-standard-4	\$0.154	\$0.166	\$0.134	
Compute optimized	c6g.xlarge	F4s v2	c2-standard-4	\$0.136	\$0.169	\$0.208	
Memory optimized	r6g.xlarge	E4a v4	m1-ultramem-40	\$0.202	\$0.252	\$6.293	
Accelerated computing	p2.xlarge	NC4as T4 v3	a2-highcpu-1g	\$0.90	\$0.526	\$3.678	

https://www.simform.com/blog/compute-pricing-comparison-aws-azure-googlecloud/

	aws	Microsoft Azure	Google Compute Engine
CPUs	1	1	1
RAM	2GB	2GB	3.75GB
Storage	30GB free	16GB	\$.02/GB per month
Bandwidth	10GB free	5GB free	\$.12/GB per month
Price	\$7.00/month	\$18.97/month	\$15.60/month
	Visit site »	Visit site »	Visit site »

https://www.hostingadvice.com/how-to/aws-azure-google-cloud-alternatives/

Introduction

- Containers docker?
 - LXC (Linux Containers) Lower abstraction level and direct use of Linux kernel features
 - systemd-nspawn Part of the systemd project, minimalist container manager
 - Solaris Zones Oracle/Sun-specific container technology
 - Linux-VServer Kernel patch for Linux, older virtualization technology
 - OpenVz Operating system-level virtualization, popular hosting tool
 - rkt [ended]- CoreOS-developed alternative to Docker, focus on security
 - Singularity Scientifically oriented container solution, HPC-friendly

- Application kernel to sandbox applications
 - syd, Bubblewrap, Firejail, GVisor, and minijail
- Docker / docker-compose for software development

Introduction - Docker

- VMs "Startup time in minutes" [link]
- MicroVM
 - Purpose-built for serverless workloads, everything else removed → lightweight virtual machine
 - E.g., Firecracker
 - Startup in 125ms
 - Used and developed by AWS
 - E.g., microvm
 - Inspired by Firecracker
- Choice: Security (e.g., Firecracker) vs. convenience (e.g., Docker) – both are secure if everything implemented correctly

- Docker is a containerization platform
 - Packages software into containers
 - Existing images on Docker Hub
 - Containers are isolated from each other
 - Communicate over well-defined channels
 - Docker, Inc is the company behind its tooling
 - Alternatives: Podman
 - Different architecture, docker runs a daemon and you connect via CLI, podman does not [source]
 - Podman supports docker-compose

