OST Eastern Switzerland University of Applied Sciences

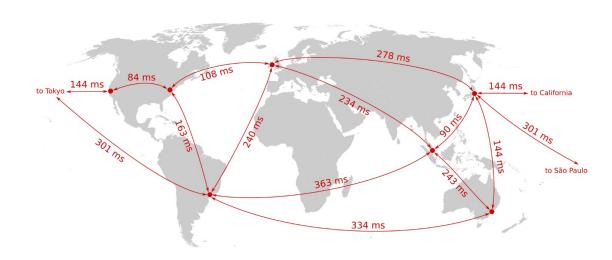
Distributed Systems (DSy)

Introduction - Location

Thomas Bocek

22.02.2025

Learning Goals


- Distributed systems add complexity. Avoid complexity!
- Why do we need distributed systems?

1) Scaling (if one machine is not enough)

2) Location (to move closer to the user)

3) Fault-tolerance (HW will fail eventually)

- Why Distributed Systems
 - Location
 - Everything gets faster (CPU, bandwidth, SSD), but latency stays
 - Einstein: nothing in nature is faster than the speed of light → you will always have latency

- Speed of light (c) in vacuum is ~300'000 km/s
 - Physical limit
- Latency: time for signal to travel from source to destination and back (round-trip time)
- Perfect vacuum light tube to Sydney: RTT
 - (16540÷300000)×1000×2 = ~110ms
- In practice: ~298ms [link] (ping au-In.metercdn.net)
- Space? Starlink satellite altitude: LEO ~550km [link]
 - Perfect condition, optimal location, no processing delay, no handoffs between satellites: theoretical latency: 7.3ms,
 - In practice: latency 20-60ms [link]

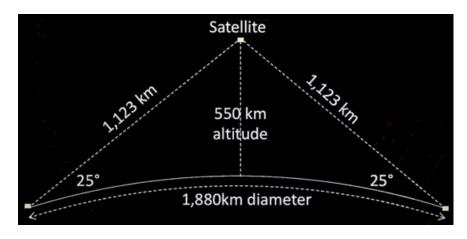
16,540 km

Distance from Rapperswil-Jona to Sydney

Speed of Light

- Practice vs. theoretical limit -298ms vs 110ms / 20-60ms vs 7.3ms
- No direct path (fiber)
 - Land route in Europe (Switzerland to Mediterranean coast): ~1'000 km
 - Maybe SeaMeWe-5? ~16'000km
 - Singapore to Sydney (undersea cable): ~7,000 km
 - Total estimate: ~24,000 km
- (24000÷300000)×1000×2 = 160ms
 - Still not 298ms
- Signal travels only speed of light in vacuum
 - Fiber = signal travels in glass [link] ~200'000 km/s

- Single mode fibers provide lower latency than multimode fibers, refractive index, wavelength of the light
- Hollow core fiber e.g. [link] with less latency
- Other materials [link]


Media	% of c	Description
Thick coaxial cable	77%	Originally used for ethernet, referred to as "thicknet"
Thin coaxial cable	65%	Referred to as ethernet "thinnet" or "cheapernet"
Unshielded twisted pair	59%	Multipaired copper cabling used for LAN and telecom applications
Microstrip	57%	PCB trace on FR4 dielectric, µr = 3.046
Stripline	47%	PCB trace in FR4 dielectric, µr = 4.6
Optical fiber	67%	Silica waveguide used to transport optical energy
Vacuum	100%	Vacuum or free space

Speed of Light

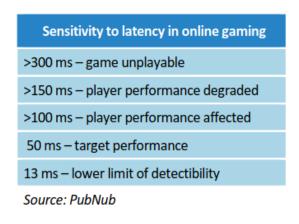
- (24000÷200000)×1000×2 = 240ms
- Non-optimal routing, queuing delays, routing delays and traffic inspection, signal repeating, protocol overhead
 - ~50-60ms plausible
- Satellites have direct connection, light/radio travels through air/space almost at ~300'000km/s
 - Wifi with lowest latency? No
 - CSMA/CA, wait times before transmission, acknowledgment packets, retransmissions, signal processing at transmitter, processing at receiver, MAC layer processing, protocol stack traversal, DCF (Distributed Coordination Function) backoff, channel busy waiting
 - Typical case: +5ms latency

- Starlink in theory with lower latency than fiber?
 - Yes, latency to cover distance may be smaller using satellites [link]

- Latency satellite (vacuum):
 - ((2×1123)÷300000)×1000×2=15ms
- Latency fiber (glass)
 - (1880÷150000)×1000×2=18.8ms

Speed of Light

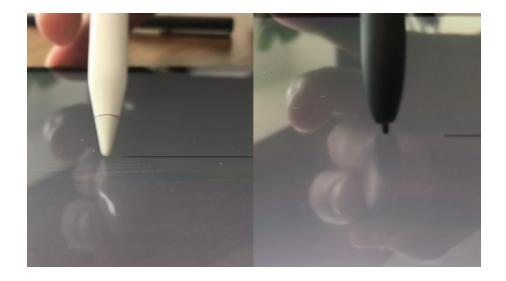
- Bandwidth much higher with fiber ~23Pb/s
 - Laser: NASA ~200Gb/s
 Starlink Inter-satellite ~100Gb/s, can be multiroute
- Weather conditions affecting signal strength (ground satellite), geomagnetic storms
- Protocol overhead, network processing, signal encoding/decoding, queuing
- Geostationary satellite: 477ms latency
- Inter-satellite communication [youtube]



- Copper vs Fiber
 - Copper propagates faster [link], but not much
- Depending on the fiber material, latency can change

VF (%)	Cable type	Ethernet physical layer
74~79%	Cat-7 twisted pair	
77%	RG-8/U	Minimum for 10BASE5 ^[4]
67%	Optical fiber (silica glass)	Minimum for 10BASE-FL, ^[5] 100BASE-FX,
67%	Plastic optical fiber	1000BASE-RH <i>x</i> PMMA
63%	Plastic optical fiber	polystyrene
65%	RG-58A/U	Minimum for 10BASE2 ^[6]
65%	Cat-6A twisted pair	10GBASE-T
64%	Cat-5e twisted pair	100BASE-TX, 1000BASE-T
58.5%	Cat-3 twisted pair	Minimum for 10BASE-T ^[7]

Minimum velocity factors allowed for network cable standards


- Importance of latency
 - Amazon: +100ms latency \rightarrow 1% sales loss [link]
 - Google: +500ms latency \rightarrow 20% drop in traffic [link]
 - Bing: +500ms latency \rightarrow revenue down 1.2% [link]
- Gaming

7 Distributed Systems

- Gaming / e.g., Esports LoL, price ~\$2.25m:
- Human reaction time 200ms
- Total from keypress to display:
 - Thinkpad 13 ChromeOS: 70ms
 - Lenovo X1 carbon 2016: 150ms
- TV output lag ~8ms (random TV)
- Keyboard 15-60ms
 - Key travel time!
 - PS/2 vs USB keyboard
 - USB polling ~8ms, PS/2 interrupt based, direct path to CPU, USB gaming keyboard with 1ms polling
- 60hz display frame rate: 8ms delay

- Tablet pen, latency 20-80ms [link]
- Competitive gaming: use special hardware!
 - 120 or 240hz, low latency mouse/keyboard

- Reducing latency
 - Assumption: perfect repeater, switch, router with no latency
 - Perfect mouse, keyboard, display
- RTT to Sydney still 110ms with perfect (unrealistic) conditions
 - nothing in nature is faster than the speed of light
 → you will always have latency

- Place services closer to user → distributed system
 - Reduced latency
 - Can increased bandwidth and throughput
 - Can improved reliability and availability
 - Drawback: coordination of data replication and caching
- e.g., CDN: Content delivery network
 - Place your images, sites, scripts close to your users
- New protocols can decrease nr. of RTT
 - Upcoming lecture

