

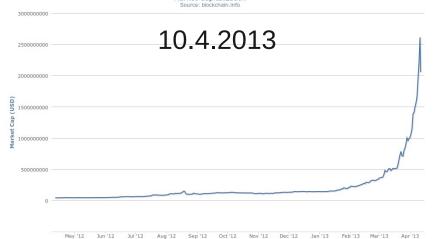
Learning Goals

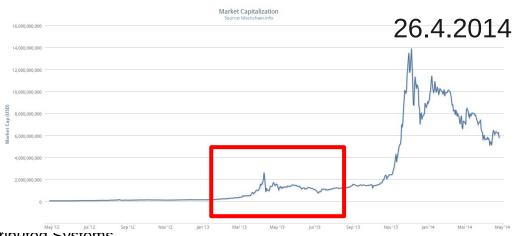
- Lecture 11 (Blockchain, Bitcoin, Ethereum)
 - Basic concepts (UTXO, account-based, mining, blockchain)
 - Advantages / disadvantages
 - 51% Attacks
 - Ethereum basic concepts

Introduction

- Bitcoin is an <u>experimental</u> digital currency
 - Bitcoin is fully peer-2-peer (no central entity)
 - 1st Bitcoin issued on January 3, 2009
 - Smallest unit: 0.00000001 BTC (1 satoshi)
- Key characteristics
 - Maximum of ~21 million BTC
 - Every transaction broadcast to all peers
 - Every peers knows all transactions (~570 GByte as of today)
 - Validation by proof-of-work (partial hash collision)
 - Difficult to fake proof-of-work
 - No double-spending
- The initiator is unknown so far

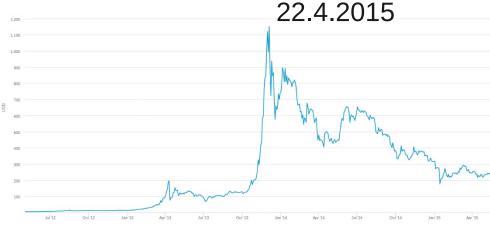
Who is Satoshi Nakamoto?

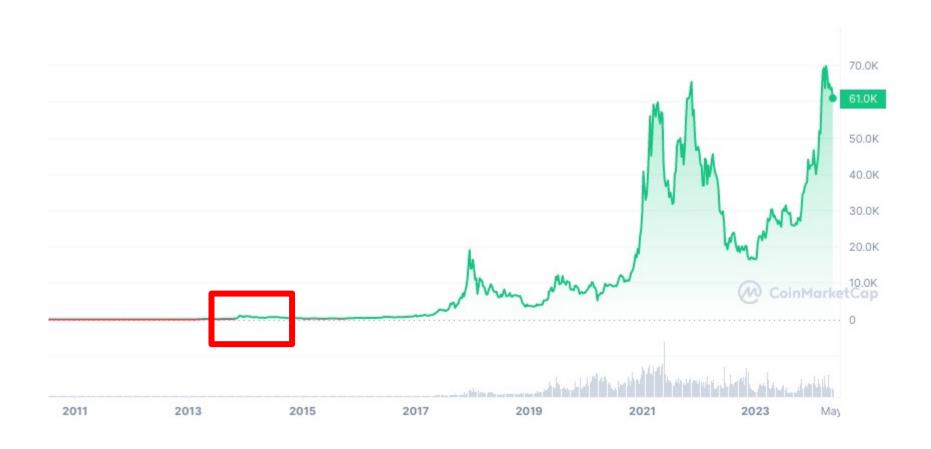

- The New Yorker believes that Satoshi Nakamoto was Michael Clear.
 - Analyzed texts from Nakamoto and searching for linguistic clues
 - 2nd possible candidate Vili Lehdonvirta
- Fast Company argues its either Neal King, Vladimir Oksman, or Charles Bry.
- Other names suggested: Martii Malmi (involved in Bitcoins since the beginning), Jed McCaleb (founder of Ripple), Donal O'Mahony, Michael Peirce, Hitesh Tewari (authors of Electronic Payment Systems for E-Commerce 2nd edition), Shinichi Mochizuki (Math Prof. Kyoto University), Hal Finney, Michael Weber, Wei Dai, Nick Szabo, Craig Wright (wired article),
- Dorian S Nakamoto (a guy with the same name)
- Satoshi is probably rich, first miner, may have ~1mio BTC
- Craig Wright, May 2016: «I'm Satoshi Nakamoto», fails to deliver proof → 2024: "Judge rules computer scientist not Bitcoin inventor"

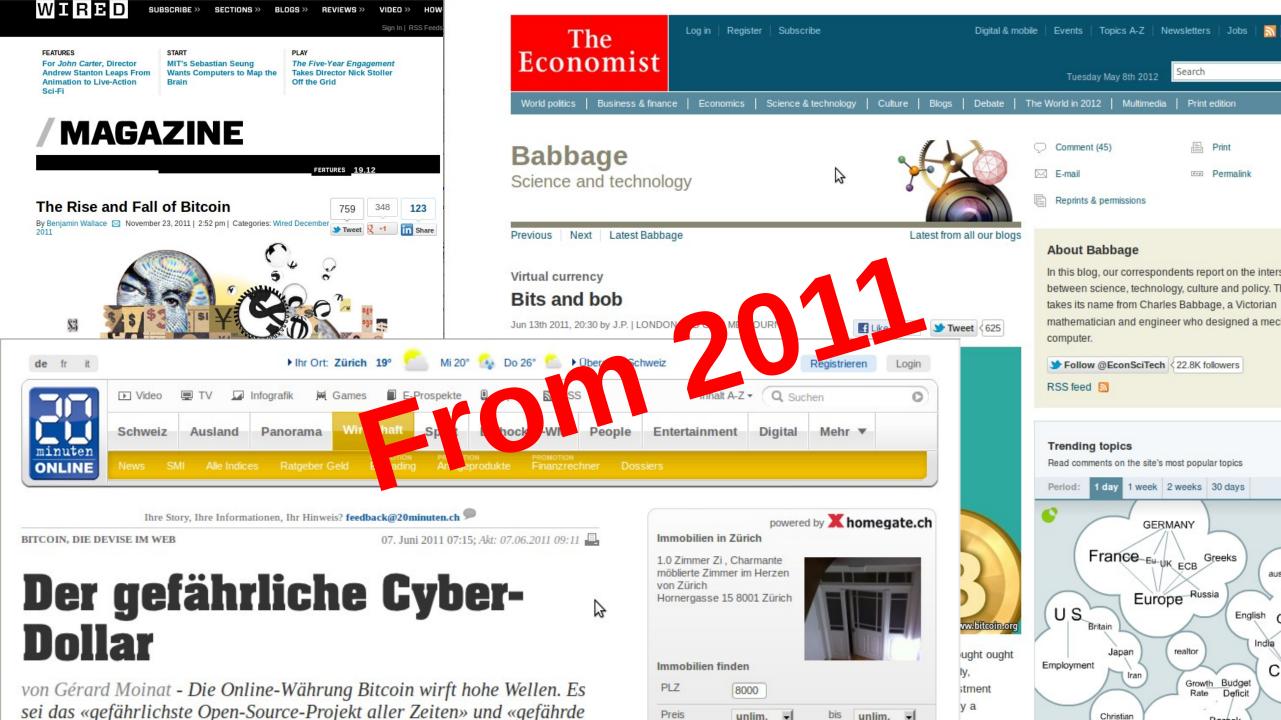


Bitcoin's Market Capitalization in USD

• Bitcoin boom, started in 2013 – current price




24.4.2013



Bitcoin's Price USD 2024

Bitcoins in the News

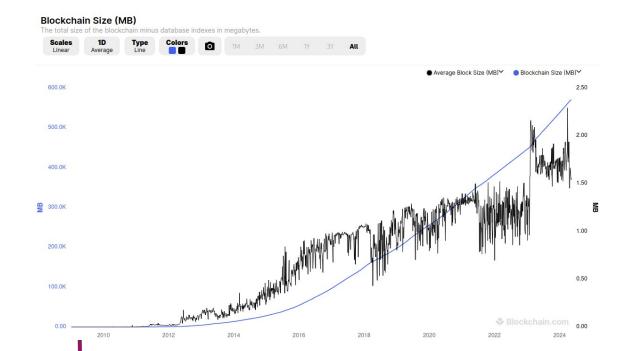
- As of 2024 11.05.2024, Forbes "Visa, Mastercard, JPMorgan And Citi Reveal Game-Changing Crypto Plan For 'Mass' Institutional Adoption' After Bitcoin, Ethereum And XRP Price Pump" [link]
- 20.04.2024, NZZ "Nun kommt die Volksinitiative, welche die Nationalbank zum Kauf von Bitcoin verpflichten will" [link]
- 20.04.2024, 20min "Grossereignis in der Krypto-Welt: Viertes Bitcoin-Halving ist durch" [link]
- 05.05.2024, Business Insider "Bitcoin trader loses almost \$70 million after sending crypto to wrong online account address." [link]

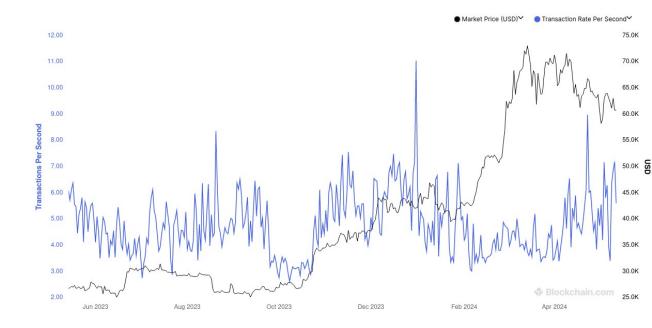
Bitcoin - Introduction

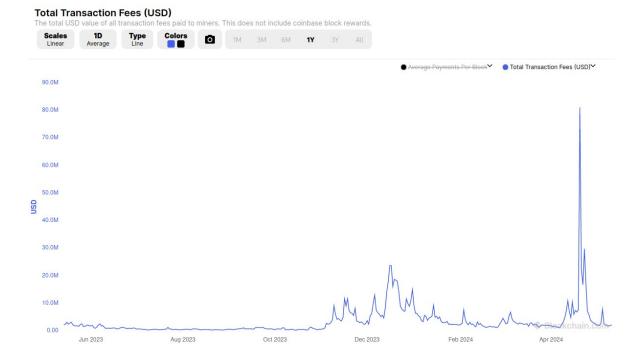
- Not relying on trust, but on strong cryptography
- Weak anonymity (pseudonimity)
 - All peers know all transactions
 - Clustering: e.g. if a transaction has multiple input addresses, assume those addresses belong to the same wallet. (example)
- Not controlled by a single entity
 - Development community, no central bank forks Bitcoin Cash, SV
- BIP: Bitcoin Improvement Proposals
- Bitcoins can be exchange for real currencies
 - Several companies allow to exchange BTC for Dollar, Euro, ...
- US, CH considered Bitcoin friendly, China (energy) not that much

Bitcoin in Numbers / Fake Volume

- Spread, e.g. ETH
- High spread, should be around 0.01USD

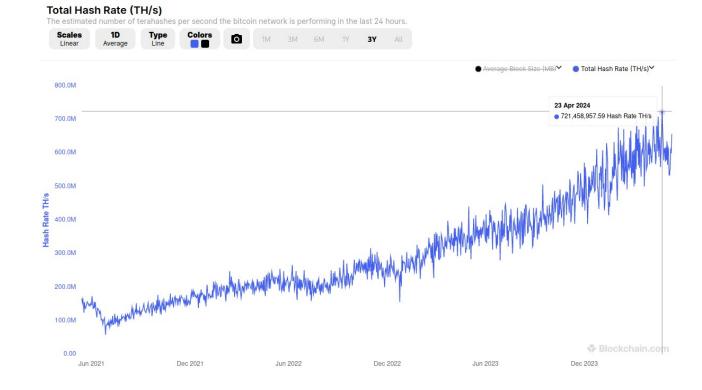

- 1 BTC \approx 61'000 US\$ (12.05.2024)
- Total of 20 Million BTC mined
 - Market capitalization of 1.2 Trillion US\$
 - Volume fake? E.g., CoinBene, RightBTC

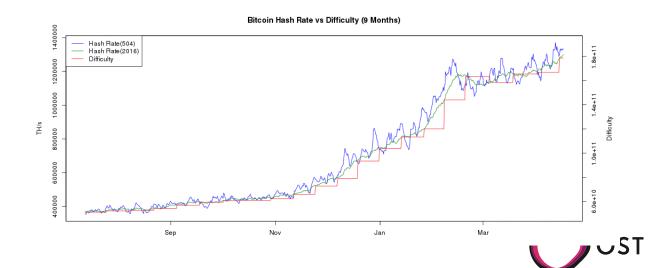

9	Bitfinex	ETH/USD	\$2,405.70	\$22,429,625	\$8,879,712	\$149,025,250	0.47%	High	645	Recently
10	B Bitstamp	ETH/USD	\$2,409.14	\$2,117,937	\$2,415,352	\$120,185,425	0.38%	High	396	Recently
11	Binance	ETH/EUR	\$2,423.08	\$731,224	\$1,017,017	\$114,211,638	0.36%	High	727	Recently



Bitcoin Transactions

- 450,000 transactions per day (highest)
 - ~3-11 transactions per second
- Transaction fees / day USD: 81m USD
 max. 20.04 Bitcoin NFT
- Blocksize: 600MB





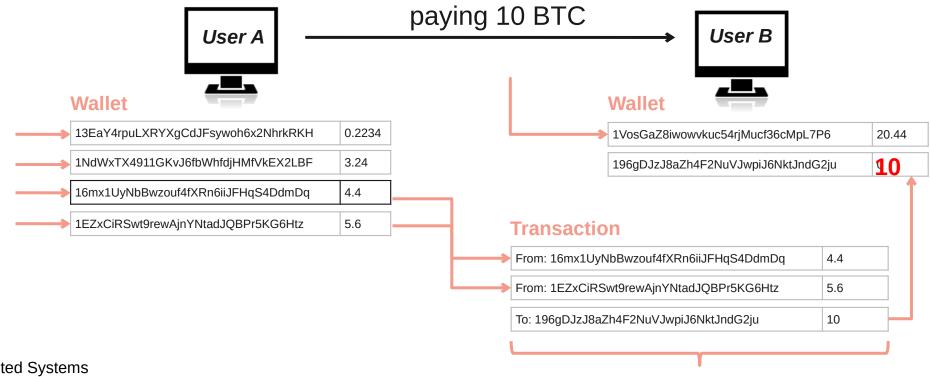
Bitcoin Numbers

- Network Hashrate (1 hash = 12.7 KFLOPs), 721Eh/s
 - ~9.1 YottaFLOPS in 2024
 - ~4.3 YottaFLOPS in 2023
 - ~3 YottaFLOPS in 2022
 - ~2.1 YottaFLOPS in 2021
 - ~1.4 YottaFLOPS in 2020
 - ~635 ZettaFLOPS in 2019
 - ~4 ZettaFLOPS in 2015
 - ~714 ExaFLOPS in 2014
 - ~900 PetaFLOPS in 2013
 - ~155 PetaFLOPS in 2012
- Adjust time: ~14 days
- Fastest supercomputer (top500.org) Frontier
 1600 PetaFLOPS (max), all 500 ~10.7 ExaFLOPS

Mechanism

- A wallet has public-private keys (wallet.dat)
 - Public key, ECDSA 256 bit → Bitcoin address (can receive bitcoins)
 - Simple address ~ base58(RIPEM160(Sha256(ecdsa public key)))
 - E.g. 1GCeaKuhDYnNLNR6LGmBtKhPqEJD4KeEtF
 - Private key used for signing transactions

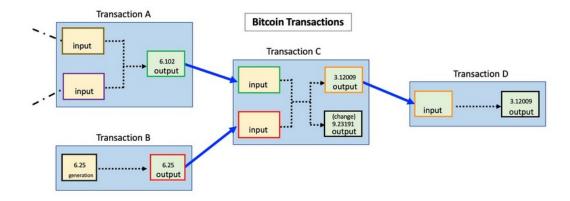
Transaction


- Peer A wants to send BTC to peer B → creates transaction message
- Transaction contains input / output
 - where the BTC came from and where it goes
- Peer A broadcasts the transaction to all the peers in the network
- Transaction stored in blocks → block is created / verified ~10min

Key Bitcoin Operations

- Private key authorizes the transaction ("access")
 - If keys are stolen, thief may use "your" coins
 - If keys are lost, coins are lost
 - In UTXO (unspent transaction output) systems, complete output is spent

Sign with Private Key of User A



https://en.bitcoin.it/wiki/Transaction

Mechanism

- Avoiding double spending
 - Transactions in blocks are confirmed.
 - guessing value that results in zero bits (0000000000001805ff174586 b6acf100f733aaf634e92f9580b4fac9272ed97)
 - Chained proofs of work
- Generation of coins
 - Mining / creating blocks → Miner get currently
 3.125 BTC per creation
 - <u>adjustable difficulty</u> 6 blocks / h
 - Sometime in 2028 reward will be 1.5625

Transactions

Bitcoin - Protocol

TX in details

version		01 00 00 00
input count		01
	previous output hash (reversed)	48 4d 40 d4 5b 9e a0 d6 52 fc a8 25 8a b7 ca a4 25 41 eb 52 97 58 57 f9 6f b5 0c d7 32 c8 b4 81
	previous output index	00 00 00 00
	script length	8a
input	scriptSig	47 30 44 02 20 2c b2 65 bf 10 70 7b f4 93 46 c3 51 5d d3 d1 6f c4 54 61 8c 58 ec 0a 0f f4 48 a6 76 c5 4f f7 13 02 20 6c 66 24 d7 62 a1 fc ef 46 18 28 4e ad 8f 08 67 8a c0 5b 13 c8 42 35 f1 65 4e 6a d1 68 23 3e 82 01 41 04 14 e3 01 b2 32 8f 17 44 2c 0b 83 10 d7 87 bf 3d 8a 40 4c fb d0 70 4f 13 5b 6a d4 b2 d3 ee 75 13 10 f9 81 92 6e 53 a6 e8 c3 9b d7 d3 fe fd 57 6c 54 3c ce 49 3c ba c0 63 88 f2 65 1d 1a ac bf cd
	sequence	ff ff ff
output count		01
output	value	62 64 01 00 00 00 00
	script length	19
	scriptPubKey	76 a9 14 c8 e9 09 96 c7 c6 08 0e e0 62 84 60 0c 68 4e d9 04 d1 4c 5c 88 ac
block lock time		00 00 00 00

Bitcoin Scripting Language

ScriptSig

PUSHDATA

signature data and SIGHASH_ALL

PUSHDATA

public key data

ScriptPubKey

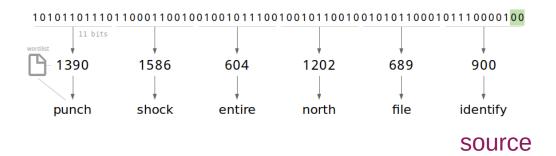
OP_DUP

OP_HASH160

PUSHDATA

Bitcoin address (public key hash)

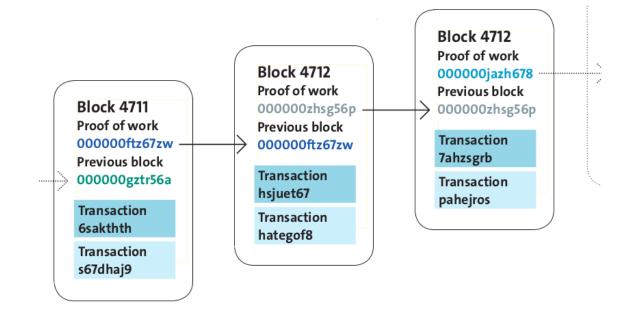
OP_EQUALVERIFY


OP_CHECKSIG

- Non-turing complete (e.g. No loops)
- With scripts
 - Multisig, n-of-m, escrow and dispute mediation
 - · Micropayment channel, refund tx in future
- Opcodes all codes
 - Data operations
 - OP PUSHDATA1, OP PUSHDATA4,...
 - Flow control
 - OP_IF, OP_ELSE, ...
 - Stack
 - OP_DUP, OP_SWAP, ...
 - Arithmetic
 - OP ADD, OP ABS, ...
 - Crypto
 - OP_SHA256, OP_CHECKSIGVERIFY

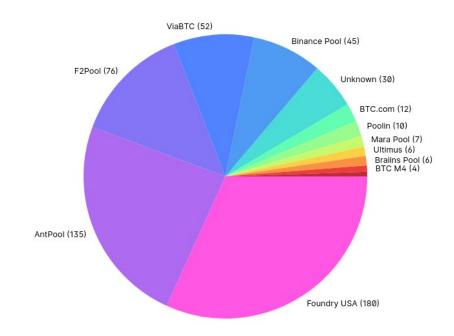
BIP39

- BIP39: Bitcoin Improvement Proposal 39
- Purpose: Enhance security & simplify backup for cryptocurrency wallets
- Key component: Mnemonic phrase (humanreadable seed)
 - Hierarchical deterministic (HD) wallets
 - Use mnemonic phrase to generate & recover wallets


- Step 1: Generate random entropy (128-256 bits)
- Step 2: Calculate SHA256 checksum (4, 8 bits)
- Step 3: Concatenate entropy & checksum
 - E.g., 128bit random + 4 bit (msb of SHA256)
- Step 4: Divide into groups of 11 bits
 - E.g., 132/11 = 12 words
- Step 5: Match each group with a predefined word from the BIP39 wordlist (2048 words)

Blockchain

- Transactions are collected in blocks
 - New block created approximately every 10 min
- Blocks contain solved crypto puzzles
 - In the form of partial <u>hash collisions</u> (SHA256)
- A block has a pointer to previous block → Blockchain


- Creation of blocks is called mining (reward)
 - Miners use highly specialized hardware!

Mechanism - Mining

- Couple of big miners
 - Miners specialized, AMD GPUs, FPGA, ASIC (application-specific integrated circuit) [1][2][3]

http://blockchain.info/pools

- Mining = creating valid blocks
- Blocks are linked to previous blocks
 - Longest block survive (most difficult)
- Different level of confirmations
 - 3-6 block conf. is considered secure
- Dangerous if someone has more than 50% computing power
 - Can exclude and modify the ordering of transactions

Mining Evolution – CPU

Ost

Mining Evolution – GPU

Mining Evolution – FPGA

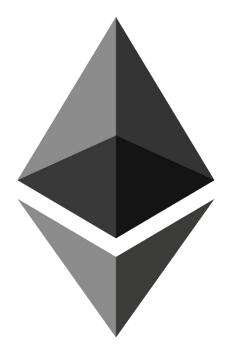
Mining Evolution – ASIC Farms

Big mining facilities

 https://www.youtube.com/watch?v=K8kua5B5K3I https://www.youtube.com/watch?v=z4qbkQ3cK8 https://www.youtube.com/watch?v=XWPifXIWPwE https://www.youtube.com/watch?v=OLddN0y2cS8 https://www.youtube.com/watch?v=4ekOcDG2D8E https://www.youtube.com/watch?v=-AJhJKSx_70 https://www.youtube.com/watch?v=f0HC1Udk6-E

Source: https://www.datacenterdynamics.com/en/news/knc-miner-to-build-second-facility-in-the-node-pole/

Mining: Evolution ASIC


- Scenario: old ASIC miner
 - Example: Avalon Batch #2
 - 70GHash/s
- Generated ~0.005CHF per day in 2020
- Generates ~0.02CHF per day in 2021
- Uses 700W
 - 0.6KWh with 0.08 / 0.04CHF
 - Cost per day 2.59 CHF (Hochtarif, Mo-Sa 06:00-22:00)
 - Cost per day 1.30 CHF (Niedertarif, rest)

Many Coins – Similar Mechanism

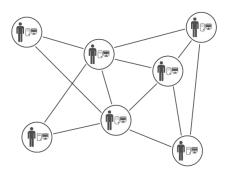
- All electronic backed by scarce resource avoid: double spending
 - Bitcoin: SHA256 partial hash collision: time, ASIC, electricity
 - Ethereum: Opcodes in Bitcoin, smart contracts in Ethereum
 - Litecoin: scrypt partial hash collision: time, GPU, memory, electricity
 - Ripple XRP: Unique node list (trusted validators, 1000): web of trust
 - Tezos, Ethereum: proof of stake:
 - Holding/staking 1% will generate e.g., 1% of coins
 - Energy efficient / proof of stake
 - ...many more

Discussion (1)

- Disadvantages
 - Power consumption
 - ~ as much as Poland
 - Not scalable
 - Bitcoin with ~7 tps vs. VISA 57,000 tps (23.12)
 [tps: transactions per sec]

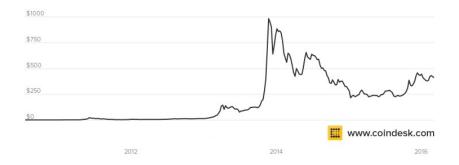
- Anonymity
 - Can be used for illegal activities

- Advantages
 - Low (fixed) tx fees
 - ~21 satoshi per byte / 3USD
 - Scalable
 - Hardware/storage gets faster



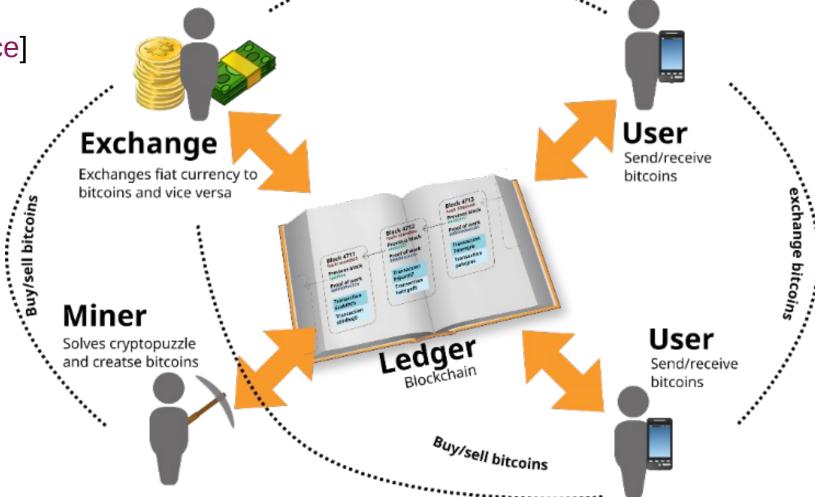
- Anonymity
 - Preserving privacy

Discussion (2)

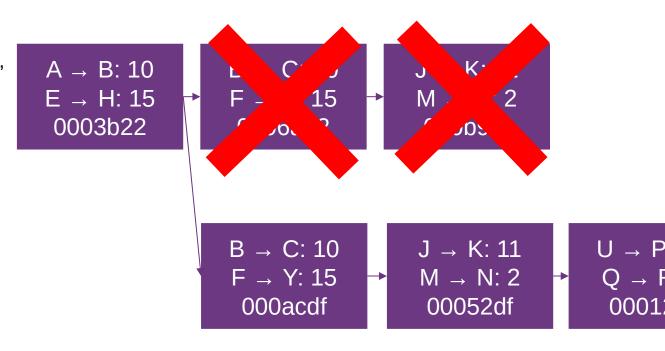

- Advantages
 - No major "crashes"
 - Mt.Gox was exchange site!
 - Decentralized
 - Open protocol
 - Forks

- Many other blockchain use cases
 - Smart contracts

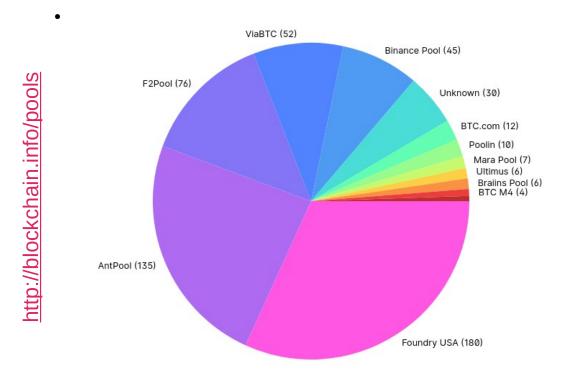
- Disadvantages
 - Volatile exchange rate


- Central elemements
 - Core developers

Summary: Bitcoin Stakeholders Buy/sell bitcoins

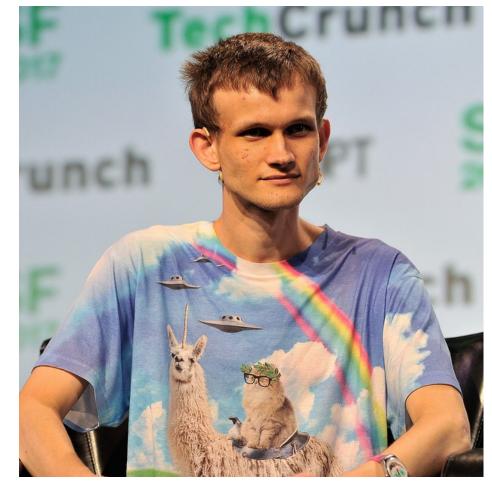

• Building blocks [source]

51% Attack


- "If a majority of CPU power is controlled by honest nodes, the honest chain will grow the fastest and outpace any competing chains."
 - https://bitcoin.org/bitcoin.pdf
- PoW: majority of hashing power, PoS: 33% of coins
- How expensive is a 51% attack?
 - Buy an attack? (5-20bn USD)
- Double spend, or rollback transactions
 - X is an exchange
 - Mine secretly, Y is your address
 - X arrived payout (1 block conf.)
 - You mine faster, broadcast secret chain
 - Tx $F \rightarrow X$: 15 never happened, goes to Y

51% Attack

- Control over 50% (33%) of the scarce resources
 - Pools: cooperative puzzle solving



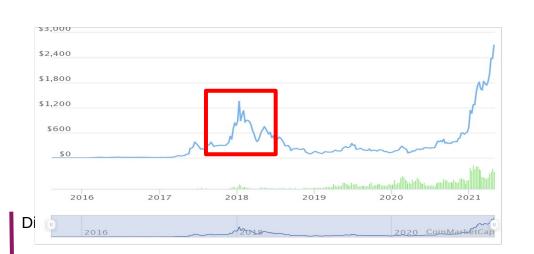
- 07.08.2021: Bitcoin SV rocked by three 51% attacks in as many months [link]
- 30.08.2020: Ethereum Classic suffers another 51% attack [link]
 - "The total value of the double spends that we have observed thus far is 219,500 ETC (~\$1.1M)."
- 23.04.2020: DeFi Platform Suffers 51%
 Attack From Its Top Miners or Does It? [link]
 - "resulted in \$6.7 million worth of the USDpegged stablecoin pUSD"
- 08.11.2020: Grin network hit with 51% attack while GRIN token remains resilient [link]

Bitcoin / Ethereum

- Bitcoin vs. Ethereum
 - Implementing new features slow
 - Many Bitcoin hardforks (segregated witness vs. increasing block size voting) Cash vs. SV
 - · Bitcoin Script limited
 - Lightning network
 - Pros and Cons no silver bullet
- Ethereum (1 ETH ~ 2900\$)
 - Generalized blockchain (loops, arithmetics, etc.)
 - White paper released in December 2013
 - Protocols designed from scratch (not like Litecoin, Peercoin)
- Ethereum foundation located in Zug (initiator known) non-profit foundation
- Mining reward ~ block every ~12s ~3%

Vitalik Buterin

Ethereum History


- Olympic (past) released 09.05.2015
 - Last Ethereum Proof-of-Concept series
 - "Olympic will feature a total prize fund of up to 25,000 ether" (now 70m USD)
- Frontier (past) released 30.07.2015
 - Main public network, "Beta"/use at your own risk
- Homestead (past) released 14.03.2016
 - Public network considered "stable", integrate critical protocol changes

Name	Release Date	Description	
Cancun-Deneb ("Dencun")	Mar 13, 2024	Introduced EIP-4844 (Proto-Danksharding) for reducing layer 2 rollup costs, among other enhancements.	
Shanghai- Capella ("Shapella")	Apr 12, 2023	Enabled staking withdrawals from the consensus layer to the execution layer.	
Paris (The Merge)	Sep 15, 2022	Transitioned Ethereum from proof-of-work to proof-of-stake, significantly reducing energy consumption of the network.	
Bellatrix	Sep 6, 2022	Prepared the network for The Merge by updating fork choice rules and bringing validator penalties to full enforcement.	
Gray Glacier	Jun 29, 2022	Delayed the difficulty bomb to ease the transition to proof-of-stake.	
Arrow Glacier	Dec 8, 2021	Similar to Gray Glacier, it delayed the difficulty bomb to ease the transition to proof-of-stake.	
Altair	Oct 27, 2021	Enhanced support for light clients, increased validator penalties, and introduced sync committees.	
London	Aug 5, 2021	Implemented EIP-1559, altering the transaction fee model to improve predictability and reduce fee volatility.	
Berlin	Apr 15, 2021	Improved gas costs for certain EVM actions and added support for multiple transaction types.	
Muir Glacier	Jan 2, 2020	Delayed the Ethereum difficulty bomb, intending to decrease block times until the next planned upgrade.	
Istanbul	Dec 8, 2019	Implemented various EIPs to enhance denial-of-service attack resilience, and gas cost efficiencies for certain EVM operations.	
Constantinople	Feb 28, 2019	Introduced several cost-adjustments for on-chain operations to improve network performance and interoperability with Zcash.	
Byzantium	Oct 16, 2017	Part of the Metropolis update, it included privacy improvements and added new opcodes for contract developers.	
Spurious Dragon	Nov 22, 2016	Enhanced network security and refined the blockchain following the DAO attack by introducing state clearing.	
Tangerine Whistle	Oct 18, 2016	Addressed the denial-of-service attack vectors and adjusted the gas pricing for various opcodes.	
Homestead	Mar 14, 2016	Officially moved Ethereum from beta to a more stable stage with improvements to transaction processing.	
Frontier	Jul 30, 2015	The initial release of Ethereum, setting the foundation of the blockchain with the capability of executing smart contracts.	

Ethereum Stats

- Basic Stats
 - 2nd in market cap ~ 350b USD
 - Daily transactions now ~1961k per day (23tx/s avg)
 - Node count (~7.5k)
 - Blocksize ~90-270KB
 - Accounts (270mio)

Blocktime and Gas

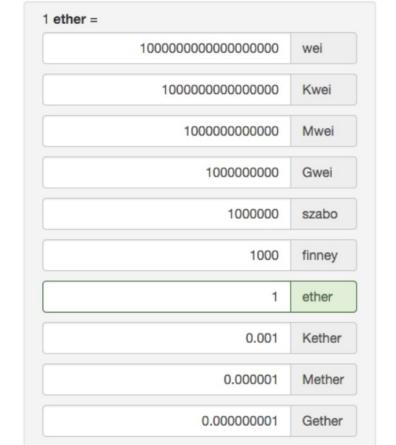
- Smart Contracts are turing complete
 - Every instruction needs to be paid for (example)
- Gas price
 - If you run out of gas, state is reverted, ETH gone

```
\begin{split} W_{zero} &= \{ \text{STOP, RETURN} \} \\ W_{base} &= \{ \text{ADDRESS, ORIGIN, CALLER, CALLVALUE, CALLDATASIZE, CODESIZE, GASPRICE, COINBASE,} \\ &\quad \text{TIMESTAMP, NUMBER, DIFFICULTY, GASLIMIT, POP, PC, MSIZE, GAS} \} \\ W_{verylow} &= \{ \text{ADD, SUB, NOT, LT, GT, SLT, SGT, EQ, ISZERO, AND, OR, XOR, BYTE, CALLDATALOAD,} \\ &\quad \text{MLOAD, MSTORE, MSTORE8, PUSH*, DUP*, SWAP*} \} \\ W_{low} &= \{ \text{MUL, DIV, SDIV, MOD, SMOD, SIGNEXTEND} \} \\ W_{mid} &= \{ \text{ADDMOD, MULMOD, JUMP} \} \\ W_{high} &= \{ \text{JUMPI} \} \\ W_{extcode} &= \{ \text{EXTCODESIZE} \} \end{split}
```

Appendix G. Fee Schedule

The fee schedule G is a tuple of 31 scalar values corresponding to the relative costs, in gas, of a number of abstract operations that a transaction may effect.

Name	Value	Description*
G_{zero}	0	Nothing paid for operations of the set W_{zero} .
G_{base}	2	Amount of gas to pay for operations of the set W_{base} .
$G_{verylow}$	3	Amount of gas to pay for operations of the set $W_{verylow}$.
G_{low}	5	Amount of gas to pay for operations of the set W_{low} .
G_{mid}	8	Amount of gas to pay for operations of the set W_{mid} .
G_{high}	10	Amount of gas to pay for operations of the set W_{high} .
$G_{extcode}$	700	Amount of gas to pay for operations of the set $W_{extcode}$.
$G_{balance}$	400	Amount of gas to pay for a BALANCE operation.
G_{sload}	200	Paid for a SLOAD operation.
$G_{jumpdest}$	1	Paid for a JUMPDEST operation.
G_{sset}	20000	Paid for an SSTORE operation when the storage value is set to non-zero from zero.
G_{sreset}	5000	Paid for an SSTORE operation when the storage value's zeroness remains unchanged or is set to
R_{sclear}	15000	Refund given (added into refund counter) when the storage value is set to zero from non-zero.
$R_{suicide}$	24000	Refund given (added into refund counter) for suiciding an account.
$G_{suicide}$	5000	Amount of gas to pay for a SUICIDE operation.
G_{create}	32000	Paid for a CREATE operation.
$G_{codedeposit}$	200	Paid per byte for a CREATE operation to succeed in placing code into state.
G_{call}	700	Paid for a CALL operation.
$G_{callvalue}$	9000	Paid for a non-zero value transfer as part of the CALL operation.
$G_{callstipend}$	2300	A stipend for the called contract subtracted from $G_{callvalue}$ for a non-zero value transfer.
$G_{newaccount}$	25000	Paid for a CALL or SUICIDE operation which creates an account.
G_{exp}	10	Partial payment for an EXP operation.
$G_{expbyte}$	10	Partial payment when multiplied by $\lceil \log_{256}(exponent) \rceil$ for the EXP operation.
G_{memory}	3	Paid for every additional word when expanding memory.
G_{txcreate}	32000	Paid by all contract-creating transactions after the Homestead transition.
$G_{txdatazero}$	4	Paid for every zero byte of data or code for a transaction.
$G_{txdatanonzero}$	68	Paid for every non-zero byte of data or code for a transaction.
$G_{transaction}$	21000	Paid for every transaction.
G_{log}	375	Partial payment for a LOG operation.
$G_{logdata}$	8	Paid for each byte in a LOG operation's data.
$G_{logtopic}$	375	Paid for each topic of a LOG operation.
G_{sha3}	30	Paid for each SHA3 operation.
$G_{sha3word}$	6	Paid for each word (rounded up) for input data to a SHA3 operation.
G_{copy}	3	Partial payment for *COPY operations, multiplied by words copied, rounded up.
$G_{blockhash}$	20	Payment for BLOCKHASH operation.



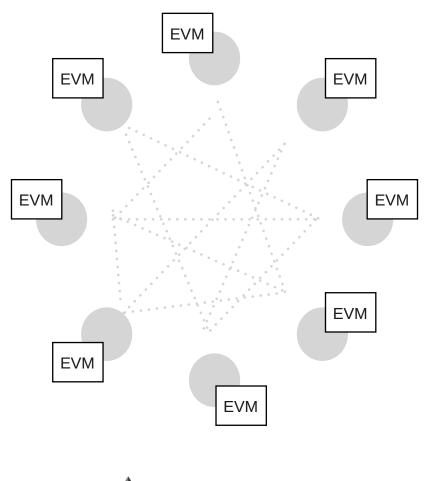
Blocktime and Gas

- Gas Price set by Miner
 - Gas price (other, 2) ~4+1 gwei

- Miner decides which transaction at which gas price to include
 - Market for TX

 Gas price with low priority fee, longer waiting time until TX will be included

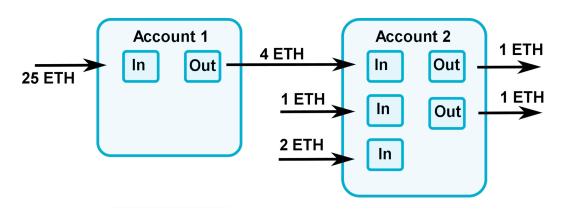
0.000000000001

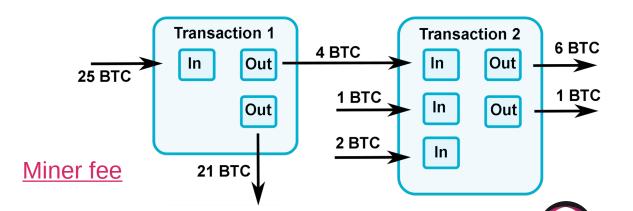

Units:

Tether

Ethereum smart contract

- Computation and storage on EVM is "very expensive": every contract is run on every full Ethereum node
 - Result on every node is the same
 - Global computer, always running, always correct
- Account-based
 - 2 types: externally controlled, contract
 - Both can have and send ether
 - External accounts: controlled by private keys
 - Contract accounts never executed on their own
 - Contract accounts: controlled by code
 - All action fired from externally controlled accounts


Account vs UTXO - Introduction


Account-based

- Global state stores a list of accounts with balances and/or code
- Transaction is valid if the sending account has enough balance
 - Balance on sender is deducted, new balance

UTXO-based

- Every referenced input must be valid and not yet spent
- Total value of the inputs must equal or exceed the total value of the outputs
 - You always spend all outputs

