
05.05.2024

Distributed Systems (DSy)
Deployment

Thomas Bocek



Distributed Systems2

Learning Goals
● Lecture 10 (Deployment)

● Different ways to deploy your service
— High-level overview

● Cloud Infrastructure [link], Cloud 
Operations [link] - Caracas Alexandru / 
Schnyder Norwin

● Cloud Solutions [link] - Mirko Stocker

https://studien.rj.ost.ch/allModules/29855_M_CldInf.html
https://studien.rj.ost.ch/allModules/43285_M_CldOp.html
https://studien.rj.ost.ch/allModules/37167_M_CldSol.html


Distributed Systems3

Back in the old days…
● OTS: apt-get / yum / pacman install 

package, e.g., Apache – configure – run

● Custom SW in the old days: Java: war, 
provide custom /etc/init.d script with binary 
or script

● Problem:
● It runs on my machine, who installs Java in the 

right version?

● What happens on crashes?

● Scaling? 

● HW defect?

● Misconfiguration - access to complete PC?

● VMs / Containers help a lot
● No access to complete PC, can scale, move to 

another machine, pre-install the right Java 
version

● The new way: based on containers

● How to deploy?
● Just copy container to prod, done?

● Many, many strategies...

https://en.wikipedia.org/wiki/Out_of_the_box_(feature)
https://en.wikipedia.org/wiki/WAR_(file_format)


Distributed Systems4

Deployment Strategies
● Many strategies and variations [link, link, link]

● Rolling Deployment

● New version is gradually deployed to replace 
the old version - without taking the entire 
system down at once

+ Minimal downtime, low risk

- Complexity, longer deployment times

● Blue-Green Deployment

● 2 environments, current prod (blue), current 
prod with new release (green). Test, then 
switch

+ Instant rollback, 0 downtime

- 2 prod environments, keep data in sync

● Canary Releases
● Canary in a coal mine - new version to a small 

group of users or servers first, if all goes well, 
more users

+ Risk reduction, user feedback

- Complexity, inconsistencies

● Feature Toggle
● Fine grained canary, set feature for specific users

+ More risk reduction, specific user feedback

- Increase complexity of codebase, config 
management

● Big Bang
● Deploy everything at once

+ Simple

- High risk, limited rollback

https://www.linkedin.com/pulse/path-production-deep-dive-software-deployment-strategies-kelee/
https://medium.com/@maheshsaini.sec/top-5-most-used-deployment-strategies-5d74f8b13b99
https://thenewstack.io/deployment-strategies/


Distributed Systems5

Practical Deployment
● Containerization as basis

● Ansible (Progress Chef, Puppet) - and more
— Playbooks with ssh host list – your host should run 

the same OS (apt/yum)

● Docker Swarm
— Works with docker-compose.yml – with docker 

you package your application the same way on 
any platform - simple

— Which to use? [link]

● Kubernetes
— Widespread

● Plain docker / podman
— Simple

● Ansible (intro)
● No agents running (unlike Progress Chef, 

Puppet)

● Push-based system

● ssh host list

● Playbook

● Run it: ansible-playbook playbook.yml

● More basic:
● pssh

https://en.wikipedia.org/wiki/Ansible_(software)
https://en.wikipedia.org/wiki/Progress_Chef
https://en.wikipedia.org/wiki/Puppet_(software)
https://en.wikipedia.org/wiki/Comparison_of_open-source_configuration_management_software
https://dockerswarm.rocks/
https://circleci.com/blog/docker-swarm-vs-kubernetes/
https://www.middlewareinventory.com/blog/ansible-playbook-example/
https://www.golinuxcloud.com/pssh-commands-parallel-ssh-linux-examples/


Distributed Systems6

Docker / Podman
● Use docker --context to run/maintain 

containers on other machines
● One of my super simple deployment scripts

● Copy files into image works as docker sends 
this file from local machine to the remote. 
Mount files does not do this

● No scaling, no logging, no resource monitoring, 
but simple

● Podman is daemonless
● Simpler, but deployment needs more work [link]

● Quadlet
— Run container under systemd in a declarative way

— Use another container config file to create a systemd 
config file

— Use another project to create a container config from a 
podman command [link]

— But, running upgrading images works seamless [link]

● Many variations, tools, helpers: podman-
compose [link]

● Opinion: I’m still using docker / docker-compose: 
daemon is awesome for deployments, docker-
compose for local development works quite well

https://www.tutorialworks.com/podman-systemd/
https://www.redhat.com/sysadmin/quadlet-podman
https://github.com/containers/podlet
https://mo8it.com/blog/quadlet/#updating-images
https://github.com/containers/podman-compose


Distributed Systems7

Docker Swarm
● Docker Swarm

• Deploy with docker-compose.yml (deploy)

• Built into docker
- docker swarm – manage swarm

- docker node – manage nodes

• Scheduler is responsible for placement of 
containers to nodes

● Can use the same files, easy to setup?
— Azure, Google cloud, Amazon

— Deprecated...

● Kubernetes vs. Docker Swarm

● “Docker Swarm has already lost the battle 
against Kubernetes for supremacy in the 
container orchestration space” [link]

● “Kubernetes supports higher demands with 
more complexity while Docker Swarm offers 
a simple solution that is quick to get started 
with.” [link]

https://codeblog.dotsandbrackets.com/docker-stack/
https://dockerswarm.rocks/
https://ddewaele.github.io/azure-docker/
https://medium.com/google-cloud/docker-swarm-on-google-cloud-platform-c9925bd7863c
https://stelligent.com/2017/02/21/docker-swarm-mode-on-aws/
https://sensu.io/blog/kubernetes-vs-docker-swarm
https://ikarus.sg/docker-to-swarm/
https://thenewstack.io/kubernetes-vs-docker-swarm-whats-the-difference/


Distributed Systems8

Kubernetes
● What is Kubernetes (K8s) 

● Container orchestration
— Automates deployment, scaling, and management 

of containerized applications

● Started by Google in 2014, now with CNCF
— Widely adopted in the industry for managing 

complex applications

● Kubernetes-based PaaS
● Google, Amazon, Azure (book), Digital Ocean, 

…
— Difficult pricing schemes

● Why Kubernetes?

● Simplifies application deployment and management

— Development: run on one machine, deployment how and 
where to distribute?

● Ensures high availability and fault tolerance

— Containers can crash, machine that runs container can 
crash (e.g., out of memory)

● Supports auto-scaling based on demand

● Facilitates rolling updates and rollbacks
— Rollbacks are hard, especially with state, stateless 

rollback is easier

● Provides a powerful ecosystem of tools and services

— Package manager Helm released in
2016 (convert docker-compose)

https://en.wikipedia.org/wiki/Kubernetes
https://en.wikipedia.org/wiki/Cloud_Native_Computing_Foundation
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/eks/?whats-new-cards.sort-by=item.additionalFields.postDateTime&whats-new-cards.sort-order=desc&eks-blogs.sort-by=item.additionalFields.createdDate&eks-blogs.sort-order=desc
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/resources/kubernetes-collection-host/
https://www.digitalocean.com/products/kubernetes/
https://geekflare.com/managed-kubernetes-platform/
https://georgepaw.medium.com/how-to-run-the-cheapest-kubernetes-cluster-at-1-per-day-9287abb90cee
https://helm.sh/docs/topics/charts/
https://kompose.io/user-guide/#alternative-conversions


Distributed Systems9

Kubernetes
● Design principles

● Configuration is declarative – declare state 
with YAML/JSON

● Immutable containers
— Don’t store state in a container. If a health check 

fails, Kubernetes removes the container and starts 
a new one

— Rollback applications, use older version of 
container – may need to change schema

● Architecture
● Master Node: Controls the overall state of the 

cluster
— API Server: Manages communication within the 

cluster
— etcd: Stores configuration data for the cluster
— Controller Manager: Ensures the desired state of the 

cluster
— Scheduler: Assigns workloads to worker nodes

● Worker Node: Runs application containers
— kubelet: Communicates with the master node and 

manages containers
— kube-proxy: Handles network routing and load 

balancing
— Container runtime: Executes containers (Docker, 

containerd, etc.)

Kubernetes 
Master

Kubernetes 
Worker

Kubernetes 
Worker

Kubernetes 
Worker



Distributed Systems10

Kubernetes
● Key Concepts [link]

● Pod: Smallest deployable unit, contains one or 
more containers

● Service: Stable network endpoint to expose a 
set of Pods

● Deployment: Manages the desired state of an 
application, define scale, HW limits

● ConfigMap: Stores non-sensitive configuration 
data for an application

● Secret: Stores sensitive configuration data, like 
passwords and API keys

— Volume: Persistent 
storage for data 
generated by a 
container

— Namespaces – run 
multiple projects on 
one cluster, separate 
with namespaces

https://kubernetes.io/docs/concepts/
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/


Distributed Systems11

Kubernetes
● Getting Started with Kubernetes: Minikube, k3s

● Minikube: Run a single-node Kubernetes cluster locally

● kubectl: Command-line tool for managing a Kubernetes 
cluster

● Kubernetes Dashboard: Web-based user interface for 
managing a cluster

● Deploy any containerized application
● Use health endpoints

— Liveness/Readiness

● Official documentation: https://kubernetes.io/docs 

● Kubernetes tutorials: https://kubernetes.io/training 

● Youtube course

P
od

P
od

Deployment

P
od

P
od

Deployment

Service Service

Ingress

Source: https://cloudwithease.com/what-is-kubernetes/ 

https://minikube.sigs.k8s.io/docs/start/
https://k3s.io/
https://loft.sh/blog/kubernetes-probes-startup-liveness-readiness/
https://kubernetes.io/docs
https://kubernetes.io/training
https://www.youtube.com/watch?v=X48VuDVv0do
https://cloudwithease.com/what-is-kubernetes/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Kubernetes
	Kubernetes (2)
	Slide 10
	Kubernetes (3)

