'i
™
i

OST

Eastern Switzerland
University of Applied Sciences

Distributed Systems (DSy)

Web Architecture

Thomas Bocek
28.04.2024

Learning Goals

* Lecture 9
- What are the options to build my challenge task?
* How to run it dockerized?
- What is currently “state-of-the-art™?

2 | Distributed Systems O OST

Server-Side Rendering

» “Classic” approach - “SSR” - Response: Generate the appropriate HTML,

CSS, and JavaScript for the requested page.

* Not to be confused with static site generation _ _
(SSG) « Browser rendering: browser receives response

and renders page
* Server generates HTML/JS/CSS dynamically,

sends the assets in real-time to the browser * Big advantage: SEO, but needs the server

rendering for every request (caching!)
User request: browser sends a request to the

web server (server-side routing) e Static site generation: pre-render
HTML/CSS/JS since its the same for every

Server processing: server processes request)
user. Done only once, resp, if the content

by running server-side code (e.g., C#, Java,

), changes.
- Fetch required data from a database or other « https://dsl.i.ost.ch - markdown to HTML
sources

. . Can also include DB access
— Server-side code can use template engines to

render the HTML - reusability

3 | Distributed Systems O OST

https://dsl.i.ost.ch/

Simple Example
e Using LLMs

4 | Distributed Systems O OST

Single Page Application SPA | CSR

* Interactions occur within a single web page User interactions: JavaScript manages the Ul
_ _ updates Application does not require full page
* Client page dynamically updates as the user reloads.
interacts with it, providing a smooth, app-like « APl communication: When the SPA needs to

experience fetch or send data, communicates through

* Relies on JavaScript to update Ul APIs

Initial request; browser sends a request to web Client-side routing: SPAs for navigation

server, hosting the HTML/JS

Initial response: server returns a single HTML
file with CSS/JavaScript. JavaScript files
contain the application's logic

Use a framework: React, Angular, Vue

Feels more app like

The backend serves API requests only

Browser rendering: shows HTML file, typically
a spinner, then executes JavaScript

SEO only works if JavaScript is executed at
the SE.

5 | Distributed Systems O OST

Simple Example
e Using LLMs

6 | Distributed Systems O OST

Architecture

* Server side rendering (SSR) * Single page application (SPA), client side
rending (CSR)

Service
Instance 1

—
o
)
a
o
D
)
-
O
1%
w

Service
Instance 1

Service
Instance 2

Frontend

7 | Distributed Systems

Web Architectures

e SPA: CORS - Cross-Origin Resource Sharing * 17.03.2023: New React docs pretend SPAs

HTTP-header based mechanism to indicate don't exist anymore [link]

other origins (domain, scheme, or port) from » “The strongly recommended way to start a new
which a browser can load assets. React project is to use a framework such as
Next.js, while the traditional route of using
bundlers like Vite or CRA is fairly strongly

Initial HTML not with a “spinner”, but already discouraged.”
the first content in HTML, like SSR (e.g.,
next.js server renders it for you - JavaScript)

Further access, with API, like SPA
Combine SSR/SPA

Flatfeestack: pre-SSR/SPA ® _O......

— Every user sees the same page,.“
SSR can be pre-hydrated

» “State-of-the-art”: hydration

Service

Instance 1

Service
Instance 2

Users

Frontend
8 | Distributed Systems OST

Jaoue|eq peo

https://wasp-lang.dev/blog/2023/03/17/new-react-docs-pretend-spas-dont-exist

9

Examples

* Server side rendering (e.g., handlebarsjs)

Static site generation: dsl.i.ost.ch

« Componets: nginx

- Java daemon who reacts on file changes in a
director. If markdown file changes - create

HTML, copy it to nginx directory

+ Simple example: ssr.go (no template)

- Components: go-based server
SPA

- Components: node server, go server

Distributed Systems

* Hydration

Server -

3

Server Rendering

Overview: source

“Static SSR™

S5R with
(Re)hydration

C5R with
Prerendering

Best of both worlds, but adds complexity,
needs JavaScript in the backend

--- Browser

¥

<f>|

Full CSR

An application
where input is
navigation requests
and the output Is
HTML in response
to them.

Entirely server-side

Dynamic HTML

Controls all aspects.

T = FCP
Fully streaming

Slow TTFB
Inflexible

Infra size / cost

Built as a Single
Page App, but all
pages prerendered
to static HTML as a
build step, and the
15 Is remaoved.

Buillt as If client-side

Static HTML

Fast TTFB
T =FCP
Fully streaming

Inflexible
Leads to hydration

bulld/deploy size

Gmail HTML, Hacker News Dacusawrus, Netflix*

Built as a Single
Page App. The
server prerenders
pages, but the full
app is also booted
an the client,

Bullt as cllent-side

Dynamic HTML
and |S/DOM

Renders pages
Flexible
Slow TTFE

TT| 525 FCP
Usually buffered

Infra size & |5 size

Razzle, etc

A Single Page App,
wihere the initial
shelliskeleton is
prerendered to
static HTML at build
time.

Client-side

Partial static HTML,
then [S/DOM

Delivers static HTML

Flexible
Fast TTFB

TTI = FCP
Limited streaming

15 slze

Gatsby, Vuepress, eic

A Single Page App.
Al logic, rendering
and booting is done
on the client. HTML
is essentially just
script & style tags.

Client-side
Entirely j5/00M
Delivers static HTML

Flexible
Fast TTFB

TTl === FCP
Nix streaming

15 size

Mot apps

gt

)ST

https://dev.to/ajcwebdev/what-is-partial-hydration-and-why-is-everyone-talking-about-it-3k56#react

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

