
24.03.2024

Distributed Systems (DSy)
Monorepos vs. Polyrepos (Multirepo)

Thomas Bocek



Distributed Systems2

Learning Goals
● Lecture 3 (Repositories)

● What is a monorepo, what is a polyrepo?

● When to use which type?



Distributed Systems3

Project Setup
● Project setup the wrong way:

● https://github.com/tbocek/DSy

● Everything (Java, Golang, Javascript) flat in one 
directory – do not do this

● Split up
● Backend, frontend, service1, etc. in separate 

repositories

● ~1 technology per split
— Most likely you won’t have a frontend mix of 

frontend technologies e.g., Angular with Vue
— Sometimes you do :)

— Sometimes you have a script directory, with 
different languages (bash, javascript)
— Sometimes you don’t :)

https://github.com/tbocek/DSy


Distributed Systems4

Monorepo
● One repository for all projects

● 1 sub-directory with frontend, 1 sub-directory with 
backend, etc.

● Tools e.g., lerna - update dependencies, hoisting

● Other names: onerepo or unirepo

● Examples

● Simform
— Started with monorepo, switched to mulirepo, now with 

hybrid approch “you can’t blindly follow any approach”

● Google, Facebook, Twitter
— Use monorepos (others do not)

● Flatfeestack
— Used hybrid approach (scripts, submodules), now trying 

monorepo

https://codefresh.io/continuous-integration/using-codefresh-with-mono-repos/ 

https://github.com/lerna/lerna
https://www.jonathancreamer.com/inside-the-pain-of-monorepos-and-hoisting/
https://www.simform.com/blog/monorepo-vs-polyrepo/
https://medium.com/@mattklein123/monorepos-please-dont-e9a279be011b
https://github.com/flatfeestack/flatfeestack
https://codefresh.io/continuous-integration/using-codefresh-with-mono-repos/


Distributed Systems5

Polyrepo
● Multiple repositories for a project

● Frontend in a different repository than the 
backend

● Example: https://github.com/flatfeestack 
— Wip, not ready to make it public…

— Frontend: Svelte, npm

— Backend: Golang

● Other names: manyrepo or multirepo

● Sync via git submodules or via bash script
● Submodules: can also be used as dependency 

management

● Sync with repo - 

https://github.com/flatfeestack
https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://github.com/joelparkerhenderson/monorepo-vs-polyrepo#could-you-get-the-best-of-both-worlds-by-having-a-monorepo-of-submodules
https://gerrit.googlesource.com/git-repo/


Distributed Systems6

Pro/Cons - Opinion
● Monorepo

● Tight coupling of projects
— E.g., generating openapi.yml from backend, generate types 

for frontend → simply copy

● Everyone sees all code / commits

● Encourages code sharing within organization

● Scaling: large repos, specialized tooling

● Polyrepo

● Loose coupling of projects
— If you want to generate openapi.yml, you need access from 

the backend repository to the frontend (e.g., curl+token)

● Fine grained access control

● Encourages code sharing across organizations

● Scaling: many projects, special coordination

● Opinion: Accenture - “From my experience, for a smaller team, starting with mono-repo is 
always safe and easy to start. Large and distributed teams would benefit more from poly-repo”

● My opinion: for small teams and “independent” project, use polyrepo. (I worked with small 
teams with mono and polyrepo, I have worked in big projects with polyrepos, but never in a big 
project with monorepos). If you have a tight coupling between projects (OpenAPI), use 
monorepos.

● Other opinion (sales pitch): https://monorepo.tools 

K
ey

 D
iff

er
e

nc
e

s 

https://www.accenture.com/us-en/blogs/software-engineering-blog/how-to-choose-between-mono-repo-and-poly-repo
https://monorepo.tools/
https://github.com/joelparkerhenderson/monorepo-vs-polyrepo#key-differences

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

