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Distributed Systems2

Learning Goals
● Lecture 4 (Containers and VMs)

● What is the difference of VM / Container?

● How does docker work (container 
implementation)?
— Best practices

● What is docker-compose, and how to run 
multiple services

● How to use it in your challenge task



Virtualization
● “creation of a virtual machine that acts like a real 

computer with an operating system” 
[source]

● Host machine: machine where the virtualization 
software runs

● Guest machine: virtual machine

● Hypervisor runs virtual machines

● Type 1: bare-metal – e.g., Xen
— “We built Amazon EC2 using a virtual machine monitor 

by the name of Xen” [source]

● Type 2: hosted – e.g., VirtualBox

● Run unmodified OS with Intel VT-x and AMD-V, 
or paravirtualized if not present

● E.g., VM should not access memory directly

● Needs to be the same architecture
● Otherwise use emulation, e.g., QEMU

— Ubuntu on a RISC-V processor

— Qemu, opensbi, u-boot

● Gaming console emulators: Snes9x, 
Mupen64Plus, Switch

● Virtual desktop infrastructure (VDI)
● Interact with a virtual machine over a network

● Containers
● Isolated user-space instances

● OS support: isolations

https://en.wikipedia.org/wiki/Virtualization
https://en.wikipedia.org/wiki/Hypervisor
https://xenproject.org/
https://aws.amazon.com/es/blogs/aws/amazon_ec2_beta/
https://www.virtualbox.org/
https://en.wikipedia.org/wiki/X86_virtualization
https://www.qemu.org/
https://wiki.debian.org/RISC-V
https://wiki.ubuntu.com/RISC-V
https://github.com/snes9xgit/snes9x
https://mupen64plus.org/
https://yuzu-emu.org/
https://en.wikipedia.org/wiki/Desktop_virtualization
https://www.ibm.com/cloud/learn/containers
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Introduction
● Docker is a containerization platform

● Docker as a software delivery framework
● Packages software into containers

— Existing images on Docker Hub

● Provides OS-level virtualization

● Containers are isolated from each other
— Communicate over well-defined channels

● Docker, Inc is the company behind its tooling

● Alternatives: Podman
— Different architecture, docker runs a daemon and 

you connect via CLI, podman does not [source]

— Podman supports docker-compose 

● OS virtualization (Containers, e.g., Docker) 
vs virtual machine (VirtualBox) [link]
● Reduced IT management resources

● Faster spin ups

● Smaller size means one physical machine can 
host many containers

● Reduced & simplified security updates

● Less code to transfer, migrate, and upload 
workloads

https://de.wikipedia.org/wiki/Docker_(Software)
https://hub.docker.com/
https://www.docker.com/
https://podman.io/
https://developers.redhat.com/blog/2019/02/21/podman-and-buildah-for-docker-users/
https://podman.io/releases/2021/02/11/podman-release-v3.0.0.html
https://www.backblaze.com/blog/vm-vs-containers/
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Container Virtual Machine

Comparison

+ Reduced size of snapshots 2MB vs 45MB

+ Quicker spinning up apps

+ / - Available memory is shared

+ / - Process-based isolation (share same 
kernel)

Use case: complex application setup, with 
container less complex configuration

Providers: ECS, Kubernetes Engine, 
Docker on Azure (or Kubernetes)

+ App can access all OS resources

+ Live migrations

+ / - Pre allocates memory

+ / - Full isolation

Use case: better hardware utilization / resource 
sharing

EC2, Virtual Machines, Compute Engine, 
Droplets

Market shares

https://aws.amazon.com/ecs/
https://cloud.google.com/kubernetes-engine/
https://docs.microsoft.com/en-us/azure/docker/
https://aws.amazon.com/ec2/
https://azure.microsoft.com/en-us/services/virtual-machines/
https://cloud.google.com/compute/
https://www.digitalocean.com/products/droplets/
https://wire19.com/amazon-microsoft-and-google-cloud-infrastructure-market/
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Virtual Machines

Prices / VM on e.g., AWS

● On-Demand
● Machine

● Data transfer

● IP address

● Spot instances (discount when not needed)

● Reserved Instances

● Comparison, comparison, comparison
● Not easy to compare

● Optimize for cost → provider changes cost 
structure, you need to adapt again for 
optimizing

https://www.simform.com/blog/compute-pricing-comparison-aws-azure-googlecloud/ 

https://www.hostingadvice.com/how-to/aws-azure-google-cloud-alternatives/ 

https://aws.amazon.com/ec2/pricing/on-demand/
https://www.simform.com/compute-pricing-comparison-aws-azure-googlecloud/
https://www.cloudhealthtech.com/blog/azure-vs-aws-pricing
https://www.hostingadvice.com/how-to/aws-azure-google-cloud-alternatives/
https://www.simform.com/blog/compute-pricing-comparison-aws-azure-googlecloud/
https://www.hostingadvice.com/how-to/aws-azure-google-cloud-alternatives/
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Docker Examples
● Install docker [ubuntu, Mac, Windows]

● docker run hello-world
● Fetches the hello world example from docker hub

● No version provided – latest

● Docker Hub: container image repository
— Community / official

— Alpine

● docker save hello-world –o test.tar
● tar xf test.tar
● tar xf 

cdccdf50922d90e847e097347de49119be0f17c18
b4a2d98da9919fa5884479d/layer.tar

● ./hello

● See your installed images
● docker images / docker images –a
● docker rmi hello-world / docker 
rmi fce289e99eb9

● docker ps -a
● docker rm 913edc5c90c4

● GUI: e.g., DockStation, other

https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-windows/
https://hub.docker.com/_/hello-world
https://hub.docker.com/
https://hub.docker.com/_/alpine
https://dockstation.io/
https://dzone.com/articles/a-comparison-of-docker-guis
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Details
● Bocker: Docker implemented in around 100 

lines of bash
● Requirements: btrfs-progs, curl, iproute2, 

iptables, libcgroup-tools, util-linux, coreutils

● FS Virtualization
● OverlayFS: union filesystem, “combines 

multiple different underlying mount points into 
one”

● Dockerfile:
● docker build . –t test

● docker run test

● docker save test:latest > test.tar

● 2 Layers

● Alpine, with BusyBox, 1MB, libc (musl), crypto, 
ssl, etc.

● hello.sh

● Add a new layer

● If input does not change, docker layer is kept - 
cached

Dockerfile:

FROM alpine
ADD hello.sh .
CMD ["sh", "hello.sh"]

hello.sh:

#!/bin/sh
echo "Hallo"

https://github.com/p8952/bocker
https://docs.docker.com/storage/storagedriver/overlayfs-driver/
https://en.wikipedia.org/wiki/OverlayFS
https://en.wikipedia.org/wiki/BusyBox
https://www.busybox.net/
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OverlayFS
● Example

● The lower directory can be read-only or could 
be an overlay itself

● The upper directory is normally writable

● The workdir is used to prepare files as they are 
switched between the layers.

● Read only

● How to remove data in read-only lowerdir
● Mark as deleted in upperdir

cd /tmp
mkdir lower upper workdir overlay

sudo mount -t overlay -o \
lowerdir=/tmp/lower,\
upperdir=/tmp/upper,\
workdir=/tmp/workdir \
none /tmp/overlay

cd /tmp
mkdir lower upper workdir overlay

sudo mount -t overlay -o 
lowerdir=/tmp/lower1:/tmp/lower2 /tmp/overlay

cd /tmp
mkdir lower upper workdir overlay

sudo mount -t overlay -o \
lowerdir=/tmp/lower1:/tmp/lower2,\
upperdir=/tmp/upper,\
workdir=/tmp/workdir \
none /tmp/overlay

https://blog.programster.org/overlayfs
https://wiki.archlinux.org/index.php/Overlay_filesystem
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Cgroups
● control groups: limits, isolates, prioritization 

of  CPU, memory, disk I/O, network
● Install tools

● Create two groups
● Assign 20% of CPU and 80% of CPU

● Execute bash → test CPU

● Resource control with docker

ls /sys/fs/cgroup

sudo apt install cgroup-tools / yay -S libcgroup

cgcreate -g cpu:red
cgcreate -g cpu:blue

echo -n "20" > /sys/fs/cgroup/blue/cpu.weight
echo -n "80" > /sys/fs/cgroup/red/cpu.weight

cgexec -g cpu:blue bash
cgexec -g cpu:red bash

sha256sum /dev/urandom #does not work?
taskset -c 0 sha256sum /dev/urandom

docker run \
--name=low_prio \
--cpuset-cpus=0 \
--cpu-shares=20 \
alpine sha256sum /dev/urandom

docker run \
--name=high_prio \
--cpuset-cpus=0 \
--cpu-shares=80 \
alpine sha256sum /dev/urandom

https://en.wikipedia.org/wiki/Cgroups
https://www.cloudsigma.com/manage-docker-resources-with-cgroups/
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Separate Networks
● Linux Network Namespaces

● provide isolation of the system resources 
associated with networking [source]

● Create virtual ethernet connection

● Configure network

● Run server

● Server can be contacted

● How to connect to outside?
● E.g. layer 3

ip netns add testnet
ip netns list

ip link add veth0 type veth peer name veth1 netns testnet
ip link list #?
ip netns exec testnet <cmd>

ip addr add 10.1.1.1/24 dev veth0
ip netns exec testnet ip addr add 10.1.1.2/24 dev veth1
ip netns exec testnet ip link set dev veth1 up

ip netns exec blue nc –l 8000

iptables -t nat -A POSTROUTING -s 10.1.1.0/24 -o enp9s0 -j MASQUERADE
iptables -A FORWARD -j ACCEPT #open up wide…

https://blog.scottlowe.org/2013/09/04/introducing-linux-network-namespaces/
https://www.man7.org/linux/man-pages/man7/network_namespaces.7.html


Connectivity, Security, and Robustness
● Hole punching

● URP1 got 4.5.6.7:5000, URP2 got 1.2.3.4:4000

● Unreachable peer 1 request to NAT 4.5.6.7, will fail – no 
mapping, however, unreachable peer 1 creates mapping 
with that request

● Unreachable peer 2 sends request to unreachable peer 1 
(1.2.3.4:4000)
success!

NAT
1.2.3.4

NAT
4.5.6.7

URP1
192.168.1.2

URP2
10.0.0.2

Mapping for NAT 1.2.3.4 (Unreachable peer 1)

192.168.1.2:4000 4.5.6.7:5000 4.5.6.7:5000 1.2.3.4:4000

Mapping for NAT 4.5.6.7 (Unreachable peer 2)NAT
1.2.3.4

NAT
4.5.6.7

Rendezvous
8.9.0.1

URP1
192.168.1.2

URP2
10.0.0.2

Mapping for NAT 4.5.6.7 (Unreachable peer 2)

10.0.0.2:5000 1.2.3.4:4000 1.2.3.4:4000 4.5.6.7:5000



Connectivity, Security, and Robustness
● P2P / Hole Punching Development 

(in the old days)

● Currently: network namespaces 
(since Linux 2.6.24) 

NAT 1 NAT 2

RELAY
PEER 1

PEER 2
Router to
Network
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Make your own Testbed for P2P System
● veth - Virtual Ethernet Device

● Tunnels between network namespaces

● ip netns add unr / ip netns list
● ip link add nat_lan type veth peer name 

nat_wan
● ip link set nat_lan netns unr
● ip address add 10.0.2.16/24 dev nat_wan
● ip link set nat_wan up

— ifconfig / ping

● ip netns exec unr ip address add 
172.20.0.1/24 dev nat_lan

● ip netns exec unr ip link set nat_lan up

Your IP
10.0.2.15

Router IP
10.0.2.17

Router IP
172.20.0.1

Unreachable 1
172.20.0.2

global namespace

nat namespace

Other IP
10.0.2.16

unr namespace
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Make your own Testbed for P2P System
● Setup 2 unreachable peers

● ip netns exec unr ip link add unr1 
type dummy

● ip netns exec unr ip address add 
172.20.0.2/24 dev unr1

● ip netns exec unr ip link set unr1 up
— ip netns exec unr ifconfig

● ip netns exec unr ip link set lo up
● ip netns exec unr route add default 
gw 172.20.0.1

● ip route add 172.20.0.1 dev nat_wan

Your IP
10.0.2.15

Router IP
10.0.2.16

Router IP
172.20.0.1

Unreachable 1
172.20.0.3

Unreachable 2
172.20.0.2

global namespace

unr namespace
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Docker Compose
● Docker Compose to deploy multiple 

containers
● E.g, load balancer, services, DB

● Configure your services

● Lightweight orchestration
— Start service depending on others (e.g., Postgres)

● Dockerfile
● Build your binary with a Dockerfile - example

● Create our own image with a Dockerfile
— keep images small

● Multi-stage builds, copy required files

● Remove cache, as docker is caching 
aggressively

#Dockerfile
FROM golang:alpine AS builder
WORKDIR /build
COPY server.go .
RUN go build server.go

FROM alpine
WORKDIR /app
COPY --from=builder /build/server .
CMD ["./server"]

#docker-compose.yml
version: '3'
services:
  server1:
    build: .
  client:
    image: alpine
    command: >
      sh -c "sleep 3 && echo hallo | nc server1 8081"

https://docs.docker.com/compose/
https://github.com/tbocek/DSy
https://symflower.com/en/company/blog/2022/complete-guide-on-shrinking-container-images/
https://docs.docker.com/develop/develop-images/multistage-build/
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Docker Security
● Best practices [link]

● Keep images small, up to date / attack surface

● Use tiny runtimes – alpine / distroless, avoid 
big images Ubuntu/Arch/Debian/Fedora
— My preference alpine (switched from distroless to 

alpine due to convenience)

● Check your image for vulnerabilities, snyk, clair

● Do not expose the Docker daemon socket 
(even to the containers)
— Well, traefik?

● Set a user – do not run as root
— Needs a bit more configuration, but good advice

● Limit capabilities (Grant only specific 
capabilities, needed by a container)
— Seems overkill

● Disable inter-container communication
— Ok in prod mode, not in dev mode

● Limit resources (memory, CPU, file descriptors, 
processes, restarts)
— Good for production → docker does not have a 

hard memory limit. Docker kills process that goes 
over limit, no pressure for GC if not docker aware

● Set filesystem and volumes to read-only
— Very good advice

https://cheatsheetseries.owasp.org/cheatsheets/Docker_Security_Cheat_Sheet.html
https://alpinelinux.org/
https://github.com/GoogleContainerTools/distroless
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Docker Security
●  Lint the Dockerfile at build time

— Use an IDE

● Run Docker in root-less mode
— Architectur better suited for root-less: podman 

[link] [intro] → no daemon → systemd

● Set the logging level to at least INFO

— Logging practices

● Think of Your Audience

● Use Logging Libraries

● Use a Suitable Log Level 
● TRACE level: this is a code smell if used in 

production. This should be used during 
development to track bugs

● DEBUG level: log at this level about anything that 
happens in the program.

● INFO level: log at this level all actions that are 
user-driven, or system specific (timers)

● NOTICE level: this will certainly be the level at 
which the program will run when in production.

https://developers.redhat.com/blog/2020/09/25/rootless-containers-with-podman-the-basics#why_containers_
https://darumatic.com/blog/podman_introduction
https://podman.io/blogs/2018/09/13/systemd.html
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Logging
● WARN level: log at this level all events that 

could potentially become an error. 

● ERROR level: log every error condition at this 
level. 

● FATAL level: too bad, it’s doomsday.

● Set the log level per environment. The DEV 
environment can run in the level DEBUG, 
the LOCAL environment in the level TRACE, 
while TEST/STAGE and PROD should run 
with the level INFO.

● Use Meaningful Messages

● Log in JSON – structured logging
● Keep the Log Structure Consistent

● Avoid Logging Sensitive Information
● Never ever log sensitive data in non local 

environments. Only do this temporarily in 
local environments

● Secret management
● Use SaaS solutions / e.g., github secrets. 

Cloud-based: HashiCorp Vault, AWS Secrets 
Manager or the GCP Secret Manager, or 
simplified: git secret [link], [link], [link]

https://dev.to/vnjogani/a-guide-to-git-secret-49g3
https://medium.com/@GeorgiosGoniotakis/how-to-keep-your-repositorys-sensitive-data-secure-using-git-secret-c1ddc28cb985
https://sobolevn.me/git-secret/
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