
09.03.2024

Distributed Systems (DSy)
Containers and VMs

Thomas Bocek

Distributed Systems2

Learning Goals
● Lecture 4 (Containers and VMs)

● What is the difference of VM / Container?

● How does docker work (container
implementation)?
— Best practices

● What is docker-compose, and how to run
multiple services

● How to use it in your challenge task

Virtualization
● “creation of a virtual machine that acts like a real

computer with an operating system”
[source]

● Host machine: machine where the virtualization
software runs

● Guest machine: virtual machine

● Hypervisor runs virtual machines

● Type 1: bare-metal – e.g., Xen
— “We built Amazon EC2 using a virtual machine monitor

by the name of Xen” [source]

● Type 2: hosted – e.g., VirtualBox

● Run unmodified OS with Intel VT-x and AMD-V,
or paravirtualized if not present

● E.g., VM should not access memory directly

● Needs to be the same architecture
● Otherwise use emulation, e.g., QEMU

— Ubuntu on a RISC-V processor

— Qemu, opensbi, u-boot

● Gaming console emulators: Snes9x,
Mupen64Plus, Switch

● Virtual desktop infrastructure (VDI)
● Interact with a virtual machine over a network

● Containers
● Isolated user-space instances

● OS support: isolations

https://en.wikipedia.org/wiki/Virtualization
https://en.wikipedia.org/wiki/Hypervisor
https://xenproject.org/
https://aws.amazon.com/es/blogs/aws/amazon_ec2_beta/
https://www.virtualbox.org/
https://en.wikipedia.org/wiki/X86_virtualization
https://www.qemu.org/
https://wiki.debian.org/RISC-V
https://wiki.ubuntu.com/RISC-V
https://github.com/snes9xgit/snes9x
https://mupen64plus.org/
https://yuzu-emu.org/
https://en.wikipedia.org/wiki/Desktop_virtualization
https://www.ibm.com/cloud/learn/containers

Introduction

Physical machine

Hypervisor

G
u

e
st

 O
S

A
p

p
1

A
p

p
2

A
p

p
3

Physical machine

G
u

e
st

 O
S

G
u

e
st

 O
S

Host OS

Docker

A
p

p
1

A
p

p
2

A
p

p
3

Host OS

Physical machine

Hypervisor

Guest OS

A
p

p
1

A
p

p
3

G
u

e
st

 O
S

Host OS

Docker

A
p

p
2

• Virtual machines • Container • Both

Introduction
● Docker is a containerization platform

● Docker as a software delivery framework
● Packages software into containers

— Existing images on Docker Hub

● Provides OS-level virtualization

● Containers are isolated from each other
— Communicate over well-defined channels

● Docker, Inc is the company behind its tooling

● Alternatives: Podman
— Different architecture, docker runs a daemon and

you connect via CLI, podman does not [source]

— Podman supports docker-compose

● OS virtualization (Containers, e.g., Docker)
vs virtual machine (VirtualBox) [link]
● Reduced IT management resources

● Faster spin ups

● Smaller size means one physical machine can
host many containers

● Reduced & simplified security updates

● Less code to transfer, migrate, and upload
workloads

https://de.wikipedia.org/wiki/Docker_(Software)
https://hub.docker.com/
https://www.docker.com/
https://podman.io/
https://developers.redhat.com/blog/2019/02/21/podman-and-buildah-for-docker-users/
https://podman.io/releases/2021/02/11/podman-release-v3.0.0.html
https://www.backblaze.com/blog/vm-vs-containers/

6

Container Virtual Machine

Comparison

+ Reduced size of snapshots 2MB vs 45MB

+ Quicker spinning up apps

+ / - Available memory is shared

+ / - Process-based isolation (share same
kernel)

Use case: complex application setup, with
container less complex configuration

Providers: ECS, Kubernetes Engine,
Docker on Azure (or Kubernetes)

+ App can access all OS resources

+ Live migrations

+ / - Pre allocates memory

+ / - Full isolation

Use case: better hardware utilization / resource
sharing

EC2, Virtual Machines, Compute Engine,
Droplets

Market shares

https://aws.amazon.com/ecs/
https://cloud.google.com/kubernetes-engine/
https://docs.microsoft.com/en-us/azure/docker/
https://aws.amazon.com/ec2/
https://azure.microsoft.com/en-us/services/virtual-machines/
https://cloud.google.com/compute/
https://www.digitalocean.com/products/droplets/
https://wire19.com/amazon-microsoft-and-google-cloud-infrastructure-market/

7

Virtual Machines

Prices / VM on e.g., AWS

● On-Demand
● Machine

● Data transfer

● IP address

● Spot instances (discount when not needed)

● Reserved Instances

● Comparison, comparison, comparison
● Not easy to compare

● Optimize for cost → provider changes cost
structure, you need to adapt again for
optimizing

https://www.simform.com/blog/compute-pricing-comparison-aws-azure-googlecloud/

https://www.hostingadvice.com/how-to/aws-azure-google-cloud-alternatives/

https://aws.amazon.com/ec2/pricing/on-demand/
https://www.simform.com/compute-pricing-comparison-aws-azure-googlecloud/
https://www.cloudhealthtech.com/blog/azure-vs-aws-pricing
https://www.hostingadvice.com/how-to/aws-azure-google-cloud-alternatives/
https://www.simform.com/blog/compute-pricing-comparison-aws-azure-googlecloud/
https://www.hostingadvice.com/how-to/aws-azure-google-cloud-alternatives/

8

Docker Examples
● Install docker [ubuntu, Mac, Windows]

● docker run hello-world
● Fetches the hello world example from docker hub

● No version provided – latest

● Docker Hub: container image repository
— Community / official

— Alpine

● docker save hello-world –o test.tar
● tar xf test.tar
● tar xf

cdccdf50922d90e847e097347de49119be0f17c18
b4a2d98da9919fa5884479d/layer.tar

● ./hello

● See your installed images
● docker images / docker images –a
● docker rmi hello-world / docker
rmi fce289e99eb9

● docker ps -a
● docker rm 913edc5c90c4

● GUI: e.g., DockStation, other

https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-windows/
https://hub.docker.com/_/hello-world
https://hub.docker.com/
https://hub.docker.com/_/alpine
https://dockstation.io/
https://dzone.com/articles/a-comparison-of-docker-guis

9

Details
● Bocker: Docker implemented in around 100

lines of bash
● Requirements: btrfs-progs, curl, iproute2,

iptables, libcgroup-tools, util-linux, coreutils

● FS Virtualization
● OverlayFS: union filesystem, “combines

multiple different underlying mount points into
one”

● Dockerfile:
● docker build . –t test

● docker run test

● docker save test:latest > test.tar

● 2 Layers

● Alpine, with BusyBox, 1MB, libc (musl), crypto,
ssl, etc.

● hello.sh

● Add a new layer

● If input does not change, docker layer is kept -
cached

Dockerfile:

FROM alpine
ADD hello.sh .
CMD ["sh", "hello.sh"]

hello.sh:

#!/bin/sh
echo "Hallo"

https://github.com/p8952/bocker
https://docs.docker.com/storage/storagedriver/overlayfs-driver/
https://en.wikipedia.org/wiki/OverlayFS
https://en.wikipedia.org/wiki/BusyBox
https://www.busybox.net/

10

OverlayFS
● Example

● The lower directory can be read-only or could
be an overlay itself

● The upper directory is normally writable

● The workdir is used to prepare files as they are
switched between the layers.

● Read only

● How to remove data in read-only lowerdir
● Mark as deleted in upperdir

cd /tmp
mkdir lower upper workdir overlay

sudo mount -t overlay -o \
lowerdir=/tmp/lower,\
upperdir=/tmp/upper,\
workdir=/tmp/workdir \
none /tmp/overlay

cd /tmp
mkdir lower upper workdir overlay

sudo mount -t overlay -o
lowerdir=/tmp/lower1:/tmp/lower2 /tmp/overlay

cd /tmp
mkdir lower upper workdir overlay

sudo mount -t overlay -o \
lowerdir=/tmp/lower1:/tmp/lower2,\
upperdir=/tmp/upper,\
workdir=/tmp/workdir \
none /tmp/overlay

https://blog.programster.org/overlayfs
https://wiki.archlinux.org/index.php/Overlay_filesystem

11

Cgroups
● control groups: limits, isolates, prioritization

of CPU, memory, disk I/O, network
● Install tools

● Create two groups
● Assign 20% of CPU and 80% of CPU

● Execute bash → test CPU

● Resource control with docker

ls /sys/fs/cgroup

sudo apt install cgroup-tools / yay -S libcgroup

cgcreate -g cpu:red
cgcreate -g cpu:blue

echo -n "20" > /sys/fs/cgroup/blue/cpu.weight
echo -n "80" > /sys/fs/cgroup/red/cpu.weight

cgexec -g cpu:blue bash
cgexec -g cpu:red bash

sha256sum /dev/urandom #does not work?
taskset -c 0 sha256sum /dev/urandom

docker run \
--name=low_prio \
--cpuset-cpus=0 \
--cpu-shares=20 \
alpine sha256sum /dev/urandom

docker run \
--name=high_prio \
--cpuset-cpus=0 \
--cpu-shares=80 \
alpine sha256sum /dev/urandom

https://en.wikipedia.org/wiki/Cgroups
https://www.cloudsigma.com/manage-docker-resources-with-cgroups/

12

Separate Networks
● Linux Network Namespaces

● provide isolation of the system resources
associated with networking [source]

● Create virtual ethernet connection

● Configure network

● Run server

● Server can be contacted

● How to connect to outside?
● E.g. layer 3

ip netns add testnet
ip netns list

ip link add veth0 type veth peer name veth1 netns testnet
ip link list #?
ip netns exec testnet <cmd>

ip addr add 10.1.1.1/24 dev veth0
ip netns exec testnet ip addr add 10.1.1.2/24 dev veth1
ip netns exec testnet ip link set dev veth1 up

ip netns exec blue nc –l 8000

iptables -t nat -A POSTROUTING -s 10.1.1.0/24 -o enp9s0 -j MASQUERADE
iptables -A FORWARD -j ACCEPT #open up wide…

https://blog.scottlowe.org/2013/09/04/introducing-linux-network-namespaces/
https://www.man7.org/linux/man-pages/man7/network_namespaces.7.html

Connectivity, Security, and Robustness
● Hole punching

● URP1 got 4.5.6.7:5000, URP2 got 1.2.3.4:4000

● Unreachable peer 1 request to NAT 4.5.6.7, will fail – no
mapping, however, unreachable peer 1 creates mapping
with that request

● Unreachable peer 2 sends request to unreachable peer 1
(1.2.3.4:4000)
success!

NAT
1.2.3.4

NAT
4.5.6.7

URP1
192.168.1.2

URP2
10.0.0.2

Mapping for NAT 1.2.3.4 (Unreachable peer 1)

192.168.1.2:4000 4.5.6.7:5000 4.5.6.7:5000 1.2.3.4:4000

Mapping for NAT 4.5.6.7 (Unreachable peer 2)NAT
1.2.3.4

NAT
4.5.6.7

Rendezvous
8.9.0.1

URP1
192.168.1.2

URP2
10.0.0.2

Mapping for NAT 4.5.6.7 (Unreachable peer 2)

10.0.0.2:5000 1.2.3.4:4000 1.2.3.4:4000 4.5.6.7:5000

Connectivity, Security, and Robustness
● P2P / Hole Punching Development

(in the old days)

● Currently: network namespaces
(since Linux 2.6.24)

NAT 1 NAT 2

RELAY
PEER 1

PEER 2
Router to
Network

15

Make your own Testbed for P2P System
● veth - Virtual Ethernet Device

● Tunnels between network namespaces

● ip netns add unr / ip netns list
● ip link add nat_lan type veth peer name

nat_wan
● ip link set nat_lan netns unr
● ip address add 10.0.2.16/24 dev nat_wan
● ip link set nat_wan up

— ifconfig / ping

● ip netns exec unr ip address add
172.20.0.1/24 dev nat_lan

● ip netns exec unr ip link set nat_lan up

Your IP
10.0.2.15

Router IP
10.0.2.17

Router IP
172.20.0.1

Unreachable 1
172.20.0.2

global namespace

nat namespace

Other IP
10.0.2.16

unr namespace

16

Make your own Testbed for P2P System
● Setup 2 unreachable peers

● ip netns exec unr ip link add unr1
type dummy

● ip netns exec unr ip address add
172.20.0.2/24 dev unr1

● ip netns exec unr ip link set unr1 up
— ip netns exec unr ifconfig

● ip netns exec unr ip link set lo up
● ip netns exec unr route add default
gw 172.20.0.1

● ip route add 172.20.0.1 dev nat_wan

Your IP
10.0.2.15

Router IP
10.0.2.16

Router IP
172.20.0.1

Unreachable 1
172.20.0.3

Unreachable 2
172.20.0.2

global namespace

unr namespace

17

Docker Compose
● Docker Compose to deploy multiple

containers
● E.g, load balancer, services, DB

● Configure your services

● Lightweight orchestration
— Start service depending on others (e.g., Postgres)

● Dockerfile
● Build your binary with a Dockerfile - example

● Create our own image with a Dockerfile
— keep images small

● Multi-stage builds, copy required files

● Remove cache, as docker is caching
aggressively

#Dockerfile
FROM golang:alpine AS builder
WORKDIR /build
COPY server.go .
RUN go build server.go

FROM alpine
WORKDIR /app
COPY --from=builder /build/server .
CMD ["./server"]

#docker-compose.yml
version: '3'
services:
 server1:
 build: .
 client:
 image: alpine
 command: >
 sh -c "sleep 3 && echo hallo | nc server1 8081"

https://docs.docker.com/compose/
https://github.com/tbocek/DSy
https://symflower.com/en/company/blog/2022/complete-guide-on-shrinking-container-images/
https://docs.docker.com/develop/develop-images/multistage-build/

18

Docker Security
● Best practices [link]

● Keep images small, up to date / attack surface

● Use tiny runtimes – alpine / distroless, avoid
big images Ubuntu/Arch/Debian/Fedora
— My preference alpine (switched from distroless to

alpine due to convenience)

● Check your image for vulnerabilities, snyk, clair

● Do not expose the Docker daemon socket
(even to the containers)
— Well, traefik?

● Set a user – do not run as root
— Needs a bit more configuration, but good advice

● Limit capabilities (Grant only specific
capabilities, needed by a container)
— Seems overkill

● Disable inter-container communication
— Ok in prod mode, not in dev mode

● Limit resources (memory, CPU, file descriptors,
processes, restarts)
— Good for production → docker does not have a

hard memory limit. Docker kills process that goes
over limit, no pressure for GC if not docker aware

● Set filesystem and volumes to read-only
— Very good advice

https://cheatsheetseries.owasp.org/cheatsheets/Docker_Security_Cheat_Sheet.html
https://alpinelinux.org/
https://github.com/GoogleContainerTools/distroless

19

Docker Security
● Lint the Dockerfile at build time

— Use an IDE

● Run Docker in root-less mode
— Architectur better suited for root-less: podman

[link] [intro] → no daemon → systemd

● Set the logging level to at least INFO

— Logging practices

● Think of Your Audience

● Use Logging Libraries

● Use a Suitable Log Level
● TRACE level: this is a code smell if used in

production. This should be used during
development to track bugs

● DEBUG level: log at this level about anything that
happens in the program.

● INFO level: log at this level all actions that are
user-driven, or system specific (timers)

● NOTICE level: this will certainly be the level at
which the program will run when in production.

https://developers.redhat.com/blog/2020/09/25/rootless-containers-with-podman-the-basics#why_containers_
https://darumatic.com/blog/podman_introduction
https://podman.io/blogs/2018/09/13/systemd.html

20

Logging
● WARN level: log at this level all events that

could potentially become an error.

● ERROR level: log every error condition at this
level.

● FATAL level: too bad, it’s doomsday.

● Set the log level per environment. The DEV
environment can run in the level DEBUG,
the LOCAL environment in the level TRACE,
while TEST/STAGE and PROD should run
with the level INFO.

● Use Meaningful Messages

● Log in JSON – structured logging
● Keep the Log Structure Consistent

● Avoid Logging Sensitive Information
● Never ever log sensitive data in non local

environments. Only do this temporarily in
local environments

● Secret management
● Use SaaS solutions / e.g., github secrets.

Cloud-based: HashiCorp Vault, AWS Secrets
Manager or the GCP Secret Manager, or
simplified: git secret [link], [link], [link]

https://dev.to/vnjogani/a-guide-to-git-secret-49g3
https://medium.com/@GeorgiosGoniotakis/how-to-keep-your-repositorys-sensitive-data-secure-using-git-secret-c1ddc28cb985
https://sobolevn.me/git-secret/

	Slide 1
	Slide 2
	Virtualization
	Introduction
	Introduction (2)
	Comparison
	Prices / VM on e.g., AWS
	Docker Examples
	Details
	OverlayFS
	Cgroups
	Separate Networks
	Connectivity, Security, and Robustness
	Connectivity, Security, and Robustness (2)
	Make your own Testbed for P2P System
	Make your own Testbed for P2P System (2)
	Docker Compose
	Slide 18
	Slide 19
	Slide 20

