OST Eastern Switzerland University of Applied Sciences

Distributed Systems (DSy)

Introduction, part 2

Thomas Bocek 25.02.2024

Learning Goals

- Distributed systems add complexity. Avoid complexity!
- Why do we need distributed systems?
 1) Scaling (if one machine is not enough)
 2) Location (to move closer to the user)
 3) Fault-tolerance (HW will fail eventually)

- Why Distributed Systems
 - Location
 - Everything gets faster, latency stays

- Speed of light in vacuum is ~300'000 km/s
 - Physical limit on how quickly data can travel
- Latency: time for signal to travel from source to destination and back (round-trip time)
 - Perfect vacuum light tube to Sydney: RTT \rightarrow ~110ms
 - Space? Starlink: 550km

16,540 km

Distance from Rapperswil-Jona to Sydney

- Copper vs. Fiber
 - Copper propagates faster [link], but not much
 - Depending on the fiber material, latency can change
 - Reduce latency? (Repeater, Switches, Router)

Figure 1: Low latency options in an example of two data centers 20 km apart

https://www.infinera.com/wp-content/uploads/Low-Latency-How-Low-Can-You-Go-0188-WP-RevB-0920.pdf

- Importance of latency
 - Amazon: +100ms latency \rightarrow 1% sales loss [link]
 - Google: +500ms latency → 20% drop in traffic [link]
 - Bing: +500ms latency → revenue down 1.2% [link]
 - Study: 73% said latency has a critical and direct or an important impact on their revenues [link]
- Gaming

- Gaming / Esports:
 - Human reaction time 200ms
 - Total from keypress to display:
 - Thinkpad 13 ChromeOS: 70ms
 - Lenovo X1 carbon 2016: 150ms
 - TV output lag ~15-30ms (random TV)
 - Keyboard 15-60ms
 - Key travel time!
- Reducing latency

- Faster HW: Repeater, Switch, Router
- New protocols can decrease nr. of RT
 - Upcoming lecture
- Place services closer to user
 - Reduced latency
 - Can increased bandwidth and throughput
 - Can improved reliability and availability
 - Drawback: coordination of data replication and caching
- CDN: Content delivery network distributed databases, edge computing
 - Place your images, sites, scripts close to your users

- Why Distributed Systems
 - Fault-tolerance
 - Any hardware will crash eventually
- Random bit flips in memory
 - 1990: "Computers typically experience about one cosmic-ray-induced error per 256 megabytes of RAM per month"
 - Google study 2009: more than 8% of DIMMs affected by errors per year
 - 2007: 44 reported memory errors (41 ECC and 3 double bit) on ~1300 nodes during a period of about 3 month
- Source: Bad Pin Connections, Incorrect RAM Timings, Clock Issues, RAM Design Flaws, CPU/RAM/Motherboard Integrated Logic Defects, DRAM Cell Amplification Errors, Cosmic Rays [link]
 - Cosmic rays
 - Solar flares, Coronal mass ejection, Solar proton events, Background radiation

- Cosmic rays "may" be blamed for an electronic voting error in Belgium (2003)
 - Bit flip in electronic voting machine
 - Added 4096 extra votes to one candidate
 - Candidate more votes than were possible

- Influencing factors
 - Sensitivity of each transistor, number of transistors on the microchip, altitude, floor level
- Mars Rover?
 - Cassini reported 280 bitflip/day [link] max 890 due to solar proton event - TMR with ~300MB RAM
 - Radiation-tolerant FPGAs \rightarrow TMR
- Error-correcting code memory
 - Uses TMR or Hamming Code, correct 1 bitflip / detect 2 bitflips
 - Used for Servers, not (yet) used for consumer products – good idea?

- Double bit-flips unlikely?
 - Jaguar super computer with 360TB ECC RAM
 - Double bitflip \rightarrow happened every 24h
- Check your HW
 - DDR5? on-die vs. traditional ECC [link][link]

• What can happen: e.g., expr segfaults

- HDD break [link], SSDs wear out
 - SSDs consist of NAND cells with a limited lifetime
 - An SSD disk has spare NAND that are used when cells break
 - smartctl -a /dev/xyz
- SLC, MLC, TLC, QLC
 - SLC: 10'000 100'000 write/erase cycles
 - MLC: 10'000 write/erase cycles
 - TLC: 1'000 write/erase cycles
 - QLC < 1'000 write/erase cycles

- 100% \rightarrow no spare used, My old laptop was at 92%
 - When value is down at 0% disk capacity degrades
- E.g., Samsung 4TB drive uses QLC [link]
 - Write 100 times the same 4kb file, and cells are broken?
- Wear leveling: distribute write and erase operations across all memory cells
 - 4TB \rightarrow 1b cells, write each 100 \rightarrow after 100b writes, then cells are broken (TBW)
 - If wear leveling goes wrong: Samsung 990 Pro [link]
- Caching with SLC → files / cells that are frequently changed, store on SLC, once they don't change that often move to MLC/TLC/QLC

SMART Attributes Data Struct	ture revis	sion nu	umber:	1					
Vendor Specific SMART Attri	or Specific SMART Attributes with Thresholds:								
ID# ATTRIBUTE_NAME	FLAG	VALUE	WORST	THRESH	ТҮРЕ	UPDATED	WHEN_FAILED	RAW_VALUE	
5 Reallocated_Sector_Ct	0x0033	100	100	010	Pre-fail	Always		Θ	
9 Power On Hours	0x0032	096	096	000	Old age	Alwavs	-	18227	
12 Power_cycle_count	0X0032	097	097	000	υιd_age	Always	-	2430	
177 Wear_Leveling_Count	0x0013	092	092	000	Pre-fail	Always		288	
179 Used Rsvd Blk Cnt Tot	0x0013	100	100	010	Pre-fail	Always	-	0	
181 Program_Fait_Cnt_lotat	0X0032	TOO	T00	010	υια_age	Always	-	U	
182 Erase_Fail_Count_Total	0x0032	100	100	010	Old_age	Always		Θ	
183 Runtime_Bad_Block	0x0013	100	100	010	Pre-fail	Always		Θ	
187 Uncorrectable_Error_Cnt	0x0032	100	100	000	Old_age	Always		Θ	
190 Airflow_Temperature_Cel	0x0032	071	036	000	Old_age	Always		29	
195 ECC_Error_Rate	0x001a	200	200	000	Old_age	Always		0	
199 CRC_Error_Count	0x003e	099	099	000	Old_age	Always		15	
235 POR_Recovery_Count	0x0012	099	099	000	Old_age	Always		682	
241 Total_LBAs_Written	0x0032	099	099	000	Old_age	Always		3205032857	

- Random bit flips in memory
 - Bitsquatting: DNS Hijacking without exploitation (2015)
 - Register names with single bit error, e.g,

Bitsquat Domain	Original Domain
ikamai.net	akamai.net
aeazon.com	amazon.com
a-azon.com	amazon.com
amazgn.com	amazon.com
microsmft.com	microsoft.com
micrgsoft.com	microsoft.com

- Idea: if bitflip happens, it may happen for DNS names in your memory
 - Early tests by Artem Dinaburg: "59 unique IPs per day made HTTP requests to my 32 bitsquat domains"

- Key findings
 - Most users from China (more bitflips on Chinese machines?)

Fault Tolerance

- Network outages happens often
- 07.08.2023: Slow Internet Speeds in South Africa — Break in Undersea Cables [link]
- 19.07.2023: Cable Breaks Plague Asian Subsea Cable Operators [link]
- 25.05.2023: Owners of Ship That Damaged Solomon Islands' Coral Sea Cable to Face Charges [link]

<u>Submarine Cable Map</u>

