
17.04.2023

Distributed Systems (DSy)
Deployment

Thomas Bocek



Distributed Systems2

Learning Goals
● Lecture 8 (Deployment)

● Different ways to deploy your service

— High-level overview

● Cloud Infrastructure [link], Cloud 
Operations [link] - Laurent Metzger

● Cloud Solutions [link] - Mirko Stocker

https://studien.rj.ost.ch/allModules/29855_M_CldInf.html
https://studien.rj.ost.ch/allModules/37161_M_CldOp.html
https://studien.rj.ost.ch/allModules/37167_M_CldSol.html


Distributed Systems3

Back in the old days…
● OTS: apt-get / yum / pacman install 

package, e.g., Apache – configure – run

● Custom SW: Java: war, provide custom 
/etc/init.d script with binary or script

● Problem:

● It runs on my machine, who installs Java in the 
right version?

● What happens on crashes?

● Scaling? 

● HW defect?

● Misconfiguration - access to complete PC?

● VMs / Containers help a lot

● No access to complete PC, can scale, move to 
another machine, pre-install the right Java version

● So, how to deploy your app?

● Ansible (Progress Chef, Puppet) - and more

— Playbooks with ssh host list – your host needs to run the 

same OS (apt/yum)

● Docker Swarm

— Works with docker-compose.yml – with docker you 

package your application the same way on any platform - 

simple

— Which to use? [link]

● Kubernetes

— Widespread

https://en.wikipedia.org/wiki/Out_of_the_box_(feature)
https://en.wikipedia.org/wiki/WAR_(file_format)
https://en.wikipedia.org/wiki/Ansible_(software)
https://en.wikipedia.org/wiki/Progress_Chef
https://en.wikipedia.org/wiki/Puppet_(software)
https://en.wikipedia.org/wiki/Comparison_of_open-source_configuration_management_software
https://dockerswarm.rocks/
https://circleci.com/blog/docker-swarm-vs-kubernetes/


Distributed Systems4

Docker Swarm
● Use docker --context to run/maintain 

containers on other machines

● Docker Swarm

• Deploy with docker-compose.yml (deploy)

• Built into docker

- docker swarm – manage swarm

- docker node – manage nodes

• Scheduler is responsible for placement of 
containers to nodes

● Can use the same files, easy to setup?

— Azure, Google cloud, Amazon

● Kubernetes vs. Docker Swarm

● “Docker Swarm has already lost the battle 
against Kubernetes for supremacy in the 
container orchestration space” [link]

● “Kubernetes supports higher demands with 
more complexity while Docker Swarm offers 
a simple solution that is quick to get started 
with.” [link]

https://codeblog.dotsandbrackets.com/docker-stack/
https://dockerswarm.rocks/
https://ddewaele.github.io/azure-docker/
https://medium.com/google-cloud/docker-swarm-on-google-cloud-platform-c9925bd7863c
https://stelligent.com/2017/02/21/docker-swarm-mode-on-aws/
https://sensu.io/blog/kubernetes-vs-docker-swarm
https://ikarus.sg/docker-to-swarm/
https://thenewstack.io/kubernetes-vs-docker-swarm-whats-the-difference/


Distributed Systems5

Docker Swarm
● 3 “Machines”

● KVM instances, alpine running

— Workers: 192.168.1.238, 192.168.1.103, 

192.168.1.173

— Manager: 192.168.1.166

● Run on manager

● docker swarm init --advertise-addr 
192.168.1.166

● To add a worker to this swarm, run the 
following command:

● docker swarm join --token .. 192.168.1.166

● docker info

● docker node ls

● Manager are setup

● Join nodes

● Run the docker swarm join command

● docker node ls

● Workers are setup

https://docs.docker.com/engine/swarm/swarm-tutorial/create-swarm/
https://docs.docker.com/engine/swarm/swarm-tutorial/add-nodes/


Distributed Systems6

Docker Swarm
• Create service

• docker service create --name registry --publish 
5000:5000 registry:2

• Where to find the docker image

• Check service

• docker service ls

• Many options in docker-compose

• docker stack deploy --compose-file docker-
compose.yml

https://codefresh.io/docker-tutorial/deploy-docker-compose-v3-swarm-mode-cluster/


Distributed Systems7

Kubernetes
● What is Kubernetes (K8s) 

● Container orchestration

— Automates deployment, scaling, and management 

of containerized applications

● Started by Google in 2014, now with CNCF

— Widely adopted in the industry for managing 

complex applications

● Kubernetes-based PaaS

● Google, Amazon, Azure (book), Digital Ocean, 
…

— Difficult pricing schemes

● Why Kubernetes?

● Simplifies application deployment and management

— Development: run on one machine, deployment how and 

where to distribute?

● Ensures high availability and fault tolerance

— Containers can crash, machine that runs container can crash 

(e.g., out of memory)

● Supports auto-scaling based on demand

● Facilitates rolling updates and rollbacks

— Rollbacks are hard, especially with state, stateless rollback is 

easier

● Provides a powerful ecosystem of tools and services

— Package manager Helm released in

2016 (convert docker-compose)

https://en.wikipedia.org/wiki/Kubernetes
https://en.wikipedia.org/wiki/Cloud_Native_Computing_Foundation
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/eks/?whats-new-cards.sort-by=item.additionalFields.postDateTime&whats-new-cards.sort-order=desc&eks-blogs.sort-by=item.additionalFields.createdDate&eks-blogs.sort-order=desc
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/resources/kubernetes-collection-host/
https://www.digitalocean.com/products/kubernetes/
https://geekflare.com/managed-kubernetes-platform/
https://georgepaw.medium.com/how-to-run-the-cheapest-kubernetes-cluster-at-1-per-day-9287abb90cee
https://helm.sh/docs/topics/charts/
https://kompose.io/user-guide/#alternative-conversions


Distributed Systems8

Kubernetes
● Design principles

● Configuration is declarative – declare state with 
YAML/JSON

● Immutable containers

— Don’t store state in a container. If a health check 

fails, Kubernetes removes the container and starts 

a new one

— Rollback applications, use older version of 

container – may need to change schema

● Architecture

● Master Node: Controls the overall state of the cluster

— API Server: Manages communication within the cluster

— etcd: Stores configuration data for the cluster

— Controller Manager: Ensures the desired state of the 

cluster

— Scheduler: Assigns workloads to worker nodes

● Worker Node: Runs application containers

— kubelet: Communicates with the master node and 

manages containers

— kube-proxy: Handles network routing and load balancing

— Container runtime: Executes containers (Docker, 

containerd, etc.)

Kubernetes 
Master

Kubernetes 
Worker

Kubernetes 
Worker

Kubernetes 
Worker



Distributed Systems9

Kubernetes
● Key Concepts [link]

● Pod: Smallest deployable unit, contains one or 
more containers

● Service: Stable network endpoint to expose a 
set of Pods

● Deployment: Manages the desired state of an 
application, define scale, HW limits

● ConfigMap: Stores non-sensitive configuration 
data for an application

● Secret: Stores sensitive configuration data, like 
passwords and API keys

— Volume: Persistent 

storage for data 

generated by a 

container

— Namespaces – run 

multiple projects on 

one cluster, separate 

with namespaces

https://kubernetes.io/docs/concepts/
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/


Distributed Systems10

Kubernetes
● Getting Started with Kubernetes: Minikube, k3s

● Minikube: Run a single-node Kubernetes cluster locally

● kubectl: Command-line tool for managing a Kubernetes 
cluster

● Kubernetes Dashboard: Web-based user interface for 
managing a cluster

● Deploy any containerized application

● Use health endpoints

— Liveness/Readiness

● Official documentation: https://kubernetes.io/docs 

● Kubernetes tutorials: https://kubernetes.io/training 

● Youtube course

P
od

P
od

Deployment

P
od

P
od

Deployment

Service Service

Ingress

Source: https://cloudwithease.com/what-is-kubernetes/ 

https://minikube.sigs.k8s.io/docs/start/
https://k3s.io/
https://loft.sh/blog/kubernetes-probes-startup-liveness-readiness/
https://kubernetes.io/docs
https://kubernetes.io/training
https://www.youtube.com/watch?v=X48VuDVv0do
https://cloudwithease.com/what-is-kubernetes/


Distributed Systems11


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Docker Swarm (2)
	Kubernetes
	Kubernetes (2)
	Slide 9
	Kubernetes (3)
	Slide 11

