OST

Eastern Switzerland
University of Applied Sciences

Distributed Systems (DSy)

Load Balancing

Thomas Bocek
27.03.2023

Learning Goals

* Lecture 6 (Load Balancing)
- What types of LB exists?
- Which one to pick?

- How can a LB be used for the challenge
task?

2 | Distributed Systems O OST

Load Balancing
* Challenge Task Requirement
1) Load balancing with scalable service

2) Failover of a service instance

Service
Instance 1

laouejeq peo

Service
Instance 2

HTMDMJS/CSS

Frontend

3 | Distributed Systems O OST

Service

Load Balancing ST Instance 1

* What is load balancing

Distribution of workloads across multiple computing
resources

— Workloads (requests)

— Computing resources (machines)

Service
Instance 1
Service
Instance 2

OOST

Distributes client requests or network load efficiently
across multiple servers [link]

— E.g., service get popular, high load on service

Jaouefeq peoT

- horizontal scaling

* Why load balancing

Ensures high availability and reliability by sending

requests only to servers that are online :. ;
C
Provides the flexibility to add or subtract servers as Users

demand dictates
4 | Distributed Systems

https://www.nginx.com/resources/glossary/load-balancing

3 Types: Hardware, Cloud-based, Software load balancer

* Hardware load balancer « Software load balancer

- HW-LB use proprietary software, which often L2/L3: Seesaw

uses specialized processors - L4: LoadMaster, HAProxy (desc), ZEVENET, Neutrino,

Balance (C), Nginx, Gobetween, Traefik

— Less generic, more performance
L7: Envoy (C++), LoadMaster, HAProxy (C),

~ Some use open-source SW, e.g., HAProxy ZEVENET, Neutrino (Java/Scala), Nginx (C), Traefik
(golang), Gobetween (golang), Eureka (Java) —
services register at Eureka

« Only if you control your datacenter « SWvs. SW/SW vs. HW

- E.g., loadbalancer.org, F5, Cisco

strong opinions, funny opinions, other opinion, but:
“We encourage users to benchmark Envoy in their
own environments with a configuration similar to what
they plan on using in production [source]”

https://www.loadbalancer.org/products/hardware/ e Benchmark, benchmarks

5 | Distributed Systems O OST

http://www.haproxy.org/
https://github.com/google/seesaw
https://freeloadbalancer.com/
https://www.haproxy.org/
https://en.wikipedia.org/wiki/HAProxy
https://github.com/zevenet/zlb
https://github.com/eBay/Neutrino/
https://balance.inlab.net/
https://nginx.org/
https://github.com/yyyar/gobetween
https://docs.traefik.io/
https://github.com/envoyproxy/envoy
https://freeloadbalancer.com/
https://github.com/haproxy/haproxy
https://github.com/zevenet/zlb
https://github.com/eBay/Neutrino/
https://nginx.org/
https://docs.traefik.io/
https://github.com/yyyar/gobetween
https://github.com/Netflix/eureka/wiki/Eureka-at-a-glance
https://www.loadbalancer.org/blog/nginx-vs-haproxy/
https://web.archive.org/web/20210516034323/https://blog.avinetworks.com/f5-vs-avi-networks
https://www.keycdn.com/support/haproxy-vs-nginx
https://www.envoyproxy.io/docs/envoy/latest/faq/performance/how_fast_is_envoy
https://www.loggly.com/blog/benchmarking-5-popular-load-balancers-nginx-haproxy-envoy-traefik-and-alb/
https://github.com/NickMRamirez/Proxy-Benchmarks
https://www.loadbalancer.org/products/hardware/

Types Load balancing

* Cloud-based load balancer * Choices, choices, choices... e.g., Azure:

* Pay for use ?

I ‘- SR /”/ . "“\“
* Many offerings e | e = &

- - - - A

Yes No

— DIY? - No control over datacenter Yes —
GchaI/ Deployed in | @ @
multlple regions? “‘ Azure Load Balancer

* AWS

4 N\ No
— Application Load Balancer ALB, (L7) f '"JS;”..iZI?:;?g) =

B Network Load Balancer’ (L4) Glnbal/ Deployed |n\ Yes (bo YU e S alilsztl e \ Ves Azure Front Door +
L\ multiple r:g|Zns7) —>L\appllcat|on rlz)c/‘i;;r;:cessmg per Application Gateway m
— Classic Load Balancer (legacy) .
Cloudflare (L4, L7) s > H
ingress controller

* DigitalOcean (L4)
laaS (VMs)
Do you require N No

M Azure Front Door +

N @l Azure Load Balancer
Azure (L4, L7) Yes
performance

T . ‘
\‘ acceleration?)) .
6 | Distributed Systems / OST

PaaS

y

https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/elasticloadbalancing/features/
https://aws.amazon.com/elasticloadbalancing/features/
https://aws.amazon.com/elasticloadbalancing/features/
https://cloud.google.com/load-balancing/
https://www.cloudflare.com/load-balancing/
https://www.digitalocean.com/products/load-balancer/
https://azure.microsoft.com/en-us/services/load-balancer
https://docs.microsoft.com/en-us/azure/architecture/guide/technology-choices/load-balancing-overview

Software-based load balancing

$TTL 3D
$ORIGIN tomp2p.net.

* Layer 7: HTTP(S), layer 7: DNS @ SOA ns.nope.ch. root.nope.ch. (2018030404 8H 2H 4W 3H)
NS ns.nope.ch.
. NS ns.jos.li.
* DNS Load balancmg MX 10 mail.nope.ch.
_ _ _ _ A 188.40.119.115
* Round-robin DNS, very easy to setup, static, caching with no TXT "v=spfl mx -all”
fast chanaes www A 188.40.119.115
9 bootstrap A 188.40.119.115
. bootstrap A 152.96.80.48
* S_plll_hQﬂZD_D_DN_S - different DNS information, dependmg on $INCLUDE "/etc/opendkim/keys/mail.txt”
source of the DNS request $INCLUDE "/etc/bind/dmarc.txt"

- Your ISP, you if you do recursive DNS

- Butl.1.1.1,4.4.4.4,8.8.8.8

 Anycast (you need an AS for that, difficult and time consuming)
: --- bootstrap.tomp2p.net ping statistics ---

— return the IP with lowest latency, e.g., anycast as a service, 2 packets transmitted, 2 received, @% packet loss, time 999ms
Global Accelerator rtt min/avg/max/mdev = 0.025/0.035/0.046/0.012 ms

draft@gserver:~$%$ ping bootstrap.tomp2p.net
PING bootstrap.tomp2p.net (188.40.119.115) 56(84) bytes of data.

° Reduced Downtlme, Scalable, Redundancy 64 bytes from jos.li (188.40.119.115): icmp_seq=1 ttl=64 time=0.026 ms
)) --- bootstrap.tomp2p.net ping statistics ---
* Client can decide what to do 1 packets transmitted, 1 received, 0% packet loss, time Oms
rtt min/avg/max/mdev = 0.026/0.026/0.026/0.000 ms
. Diegyaﬂychﬁujaﬂlg_unmuacl! draft@gserver:~$%$ ping bootstrap.tomp2p.net

PING bootstrap.tomp2p.net (152.96.80.48) 56(84) bytes of data.

.+ Used in bitcoin: dig dnsseed.emzy.de 64 bytes from dsl.hsr.ch (152.96.80.48): icmp_seq=1 tt1=53 time=23.1 ms

7 | Distributed Systems OST

https://en.wikipedia.org/wiki/Split-horizon_DNS
http://www.bgplookingglass.com/list-of-autonomous-system-numbers
https://labs.ripe.net/Members/samir_jafferali/build-your-own-anycast-network-in-nine-steps
https://netactuate.com/anycast-delivery-platform/
https://medium.com/faun/building-a-high-available-anycast-service-using-aws-global-accelerator-450fc8c4fd1e
https://www.imperva.com/learn/availability/dns-load-balancing-failover/

8

Load balancing L4/L7

Load Balancing Algorithms
* Round robin — loop sequentially

* Weighted round robin — some server are more powerful

— You can put weighted in from of everything

* Least connections — fewest current connections to
clients

* Least time — combination of fastest response time and
fewest active connections

* Least pending requests — fewest number of active
sessions

* Agent-based — service reports on it load

* Hash — distributes requests based on a key you define
(e.g., source) — can be static / sticky

* Random - flip a coin

Distributed Systems

Easiest: round-robin
Make sure your services are stateless!

Stateless ~ don’t store anything in the service

* If you do, you need a stick session (try to avoid this)
Same user to same service

Health checks: tell your load balancer if you are
running low on resources

Inline within service

* OOB - out of band (API to check health), e.g., necessary
with DB, as connection may be OK, but database not

L7 load balancing is more resource-intensive than
packet-based L4

Terminates TLS and HTTP

OOST

Traefik t r f |

* Open Source, software-based load balancer:

hitps:/github. com/traefikitraefik

+ “The Cloud Native Edge Router”

=] Entrypoints @ HTTP Router @ HTTP Middleware 4 Service

* L4/L7 load balancer

- Golang, single binary | ‘

® Authentication © Router Details ¥ TLS £ Middlewares 10

» Experimental HTTP/3 support i _
P PP . - S~

((addPrefixTest@docker |

 Dashboard

* Official traefik docker image e &

9 | Distributed Systems

https://github.com/traefik/traefik
https://hub.docker.com/_/traefik

[entryPoints.web
address = ":80"

etk st — tr f|

[providers.file]

* Run it: ./traefik filename =
"dynamic_load.toml"
* Now lets configure [log]
#filePath = "traefik.log"
* Redirect 8888 to access dashboard level = "INFO

[accesslLog] [http.routers.dashboérd]

« http://127.0.0.1:8888/dashboard/ rule = "PathPrefix(/api') ||
PathPrefix(/dashboard)"
entrypoints = ["web"]

RouTers service = "api@internal"
middlewares = ["auth"]

Server 1 [http.middlewares.auth.basicAuth]
5 1 P users = ["test:
P R LE“‘”CE ‘ $apr1$H6USkkkWSIgXLP6ewTTSUBKTIQESW] /"]
0ADBALANCER
REGUESTS STICKINESS \ [http.routers.coinservice]
_— SERVER 2 o .
w//_ ~LL 1 RoUTERS rule = "PathPrefix(/")
-~ EnTrYPONTS entrypoints = ["web"]
; service = "coinservice"

\\ SERVICE 2
http.sexrvices.coinservice.loadBalancer.serversl]

,,,,,, .
url = "http://127.0.0.1:8080"

http.services.coinservice.loadBalancer.serversl]
url = "http://127.0.0.1:8081"

...»\.-t-m....\>

PassHosTHeADER SERVER

http://127.0.0.1:8888/dashboard/
http://127.0.0.1:8080/

11

Service

° As a start, stateful service
* Golang

* Stickiness with cookies

* Let's add a health check
* Weighted round robin

* load balance between services and not

between servers (example)

Distributed Systems

[http.services.coinservice.loadBalancer.healthCheck]
path = "/health”

interval = "3s"

timeout = "1s"

[http.services.coinservice.loadBalancer.sticky.cookie]

Accept-Encoding: gzip, deflate
Accept-Langua ge: en-US,en;q=0
Cache-Control: max-age=0
p-alius

Cookie: _4cela=http://127.0.0.1:8081 I

= 1
Host: 127.0.0.1
o 2requests 64B/ 161 B transferre Upgra de -Insecure-Requests: 1

W O mnspector [Console [Debugger 1) Network {} Style Editor () performance D) ﬁ:] sse X
@ I Q e .F‘crth-}g: .Du-;al‘wlmlaxl-e NoThrottling $ HAR 2
Al HTML CSS JS XHR Fonts Images Media WS Other
S M D. File Ca. T Tr. S [l Headers Cookies Params Response Timings Stack Trace
doc.. It 161 470y Request Headers (4058) Raw Headers
Accept: text/htrml.a pplication/xhtml+xm..ml,q=0.9,ima gefwebp,*/*;,q=0.8

https://docs.traefik.io/routing/services/#weighted-round-robin-service

Caddy

* Configuration: dynamic
- Static: Caddyfile
* One-liners:
* Quick, local file server: caddy file-server

* Reverse proxy: caddy reverse-proxy --from
example.com --to localhost:9000

17070

reverse_proxy 127.0.0.1:8081 127.0.0.1:8080 {
unhealthy_status 5xx
fail_duration 5s

}

12 | Distributed Systems

2} Caddy

* Open Source, software-based load balancer:

“Caddy 2 is a powerful, enterprise-ready, open
source web server with automatic HTTPS
written in Go”

L7 load balancer

Reverse proxy

Static file server

HTTP/1.1, HTTP/2, and experimental HTTP/3
Caddy on docker hub

OOST

https://caddyserver.com/
https://github.com/caddyserver/caddy
https://caddyserver.com/docs/caddyfile/directives/reverse_proxy
https://hub.docker.com/_/caddy

NGINX

* Free + commercial version

* Fast webserver, ~35% market share Backend service 1
- Acquired by F5 Networks (slide 7) in 2019 :&& Backend service 2
* HTTP proxy, Mail proxy, reverse proxy, load Users

balancer . P | ks | | |

* Reverse proxy vs. load balancer

* No active health checks, no sticky sessions RequesisPeriSecond
(not usable in prod env) [source]

* Performance tuning — some ideas

sec

13 | Distributed Systems | | . h r

https://w3techs.com/technologies/details/ws-nginx
https://www.nginx.com/products/nginx/load-balancing/
https://github.com/denji/nginx-tuning
https://help.dreamhost.com/hc/en-us/articles/215945987-Web-server-performance-comparison
https://flakebi.de/projects/proxies/

14

NGINX

* Add configuration
* Health check

* Inband/passive (active - commercial)
* Default: round robin

* Least connected (least_conn)

+ Sticky (ip_hash), cookie (commercial)

* Weighted balancing (weight=1)

Distributed Systems

#/tmp/nginx.conf

events {
worker_connections 1024;

}

http {
upstream coinservice {
#least_conn;
server 127.0.0.1:8080 weight=1;
server 127.0.0.1:8081;
}

server {
listen 7070 default_server;
listen [::]:7070 default_server;
location / {
proxy_pass http://coinservice;
}
You may need this to prevent return 404
recursion.
location = /404 .html {
internal;
}
}

}
OOST

https://docs.nginx.com/nginx/admin-guide/load-balancer/http-health-check/#active-health-checks
https://docs.nginx.com/nginx/admin-guide/load-balancer/http-load-balancer/#enabling-session-persistence

HAproxy

* L4 and L7 load balancer and reverse proxy * appl by default, 3 checks
Open source option: commercial support (HAProxy at 10s interval fail, app2 HAPROXY
Technologies) will be used:

Widely used: stack overflow, github, ...

_ balance roundrobin
* Performance: fast, small Atom server in 2011 ~2300 server appl 127.0.0.1:8080 check inter 10s
fall 3
SSLTPS server app2 127.0.0.1:8081 check backup
2017: tuned to 2.3m SSL connections (32cores/64GB RAM) #/etc/haproxy/haproxy.cfg
defaults

* Install: apk add haproxy retries 3

_ o timeout client 30s
* Configure and run: /etc/init.d/haproxy start timeout connect 4s

timeout server 30s

Algorithms: roundrobin, leastconn, source
frontend www

Sticky session: appsession bind : 80
mode http
check - health checks (inband) default_backend coinservice
* Primary/secondary backend coinservice
mode http

balance roundrobin

server appl 127.0.0.1:8080 check
15 | Distributed Systems server app2 127.0.0.1:8081 checOOST

https://git.haproxy.org/?p=haproxy.git
https://www.haproxy.com/blog/benchmarking_ssl_performance/
https://www.freecodecamp.org/news/how-we-fine-tuned-haproxy-to-achieve-2-000-000-concurrent-ssl-connections-d017e61a4d27/

16

Dockerfile

° Example: caddy as LB, go as Service

* docker-compose up --scale services=5

#docker-compose.yml
version: '3’
services:
services:
build:
ports:
- "8080-8085:8080"
1b:
image: caddy
ports:
- "7070:7070"
volumes:
- ./Caddyfile:/etc/caddy/Caddyfile

#Caddyfile

17070

reverse_proxy * {
to http://dsy-services-1:8080
to http://dsy-services-2:8080
to http://dsy-services-3:8080
to http://dsy-services-4:8080
to http://dsy-services-5:8080

1b_policy round_robin
1b_try_duration 1s
1b_try_interval 100ms
fail_duration 10s
unhealthy_latency 1s

Distributed Systems

OOST

CORS

* CORS = Cross-Origin Resource Sharing - w.Header().Set("Access-Control-Allow-Origin",

. . . . el
For security reasons, browsers restrict Cross-origin)

HTTP requests initiated from scripts (among others) * Reverse proxy

Mechanism to instruct browsers that runs a resource
from origin A to run resources from origin B

Bez!‘end service 1

* Solution
Use reverse proxy with builtin webserver, e.g., nginx,
e proxy vi o
or user reverse proxy with external webserver.
— The client only sees the same origin for the API
and the frontend assets

Backend service 1
* Access-Control-Allow-Origin: https://foo.example

Backend service 2
— For dev: Access-Control-Allow-Origin: *

Frontend

17 | Distributed Systems O OST

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://foo.example/

	Slide 1
	Slide 2
	Load Balancing
	Load balancing
	3 Types: Hardware, Cloud-based, Software load balancer
	Types Load balancing
	Software-based load balancing
	Load balancing L4/L7
	Traefik
	Traefik (2)
	Service
	Caddy
	NGINX
	NGINX (2)
	HAproxy
	Dockerfile
	CORS

