
20.03.2023

Distributed Systems (DSy)
Web Architecture

Thomas Bocek

Distributed Systems2

Learning Goals
● Lecture 5

● What are the options to build my challenge task?

● What is currently “state-of-the-art”?

Distributed Systems3

Server-Side Rendering
● “Classic” approach - “SSR”

● Not to be confused with static site rendering
and (SSR)

● Server generates HTML/JS/CSS dynamically,
sends the assets in real-time to the browser

● User request: browser sends a request to the
web server (server-side routing)

● Server processing: server processes request by
running server-side code (e.g., C#, Java, …),

— Fetch required data from a database or other

sources

— Server-side code can use template engines to

render the HTML - reusability

● Response: Generate the appropriate HTML,
CSS, and JavaScript for the requested page.

● Browser rendering: browser receives response
and renders page

● Big advantage: SEO, but needs rendering
for every request (caching!)

● Static site rendering: pre-render
HTML/CSS/JS since its the same for every
user. Done only once, resp, if the content
changes.

● dsl.i.ost.ch → markdown to HTML

● Can also include DB access

Distributed Systems4

Single Page Application SPA / CSR
● Interactions occur within a single web page

● Client page dynamically updates as the user
interacts with it, providing a smooth, app-like
experience

● Relies on JavaScript to update UI

● Initial request: browser sends a request to web
server, hosting the HTML/JS

● Initial response: server returns a single HTML
file with CSS/JavaScript. JavaScript files
contain the application's logic

● Browser rendering: shows HTML file, typically
a spinner, then executes JavaScript

● User interactions: JavaScript manages the UI
updates. Application does not require full page
reloads.

● API communication: When the SPA needs to
fetch or send data, communicates through
APIs

● Client-side routing: SPAs for navigation

● Use a framework: React, Angular, Vue

● Feels more app like

● The backend serves API requests only

● SEO only works if JavaScript is executed at
the SE.

Distributed Systems5

Architecture
● Server side rendering (SSR) ● Single page application (SPA), client side

rending (CSR)

Users

Load balancer

DB

Service
Instance 1

Service
Instance 2

HTML

Users

Load balancer
DB

Service
Instance 1

Service
Instance 2API

Frontend
HTML

Distributed Systems6

Web Architectures
● SPA: CORS - Cross-Origin Resource Sharing

● HTTP-header based mechanism to indicate other
origins (domain, scheme, or port) from which a
browser can load assets.

● “State-of-the-art”: hydration

● Initial HTML not with a “spinner”, but already the
first content in HTML, like SSR (e.g., next.js server
renders it for you - JavaScript)

● Further access, with API, like SPA

● Combine SSR/SPA

● Flatfeestack: pre-SSR/SPA

— Every user sees the same page,

SSR can be pre-hydrated

● 17.03.2023: New React docs pretend SPAs
don't exist anymore [link]

● “The strongly recommended way to start a new
React project is to use a framework such as
Next.js, while the traditional route of using
bundlers like Vite or CRA is fairly strongly
discouraged.”

Users

Load balancer

DB

Service
Instance 1

Service
Instance 2API

Frontend
HTML

https://wasp-lang.dev/blog/2023/03/17/new-react-docs-pretend-spas-dont-exist

Distributed Systems7

Examples
● Static site rendering: dsl.i.ost.ch

● Componets: nginx

● Java daemon who reacts on file changes in a
director. If markdown file changes → create
HTML, copy it to nginx directory

● Server side rendering (e.g., handlebarsjs)

● Simple example: ssr.go (no template)

● Components: go-based server

● SPA

● Components: node server, go server

● Hydration

● Best of both worlds, but adds complexity,
needs JavaScript in the backend

● E.g., react: hydrate() instead of render()
method – choices... source

https://dev.to/ajcwebdev/what-is-partial-hydration-and-why-is-everyone-talking-about-it-3k56#react

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

