
12.03.2023

Distributed Systems (DSy)
HTTP/3

Thomas Bocek

Distributed Systems2

Learning Goals
● Lecture 4 (HTTP/3)

● How to use HTTP/3 for the challenge task

QUIC / HTTP/3
• QUIC: 1RTT connection + security handshake

• For known connections: 0RTT
• Built in security
• “Google's 'QUIC' TCP alternative

slow to excite anyone outside
Google” [link] (9%, 25%, 75%)
- Facebook
- Cloudflare, state of HTTP

• Example Australia: from 987ms to 329ms

Server Hello
Client Hello

Finished
App Data

App Data

Param
Param

https://blog.apnic.net/2019/03/04/a-quick-look-at-quic/
https://www.theregister.com/2018/01/17/quic_takeup_is_slow/
https://w3techs.com/technologies/details/ce-quic
https://w3techs.com/technologies/details/ce-http3
https://caniuse.com/?search=http3
https://engineering.fb.com/2022/07/06/networking-traffic/watch-metas-engineers-discuss-quic-and-tcp-innovations-for-our-network/
https://blog.cloudflare.com/landscape-of-api-traffic/
https://blog.cloudflare.com/the-state-of-http-in-2022/

4

QUIC / HTTP3
• Multiplexing in HTTP/2

• HTTP/1 → HTTP/2

• HTTP/2: Head-of-line blocking
• One packet loss, TCP needs to be ordered
• QUIC can multiplex requests: one stream does not affect

others

• HTTP/3 is great, but…
• NAT → SYN, ACK, FIN, conntrack

knows when connection ends, not
with QUIC, timeouts, new entries,
many entries

• HTTP header compression,
referencing previous headers

• Many TCP optimizations

(#1) GET b.css part 1 (#2) GET a.js part 1 (#3) GET b.css part 2

(s1) GET b.css part 1 (s2) GET a.js part 1 (s1) GET b.css part 2

source: https://blog.cloudflare.com/the-road-to-quic/

https://blog.cloudflare.com/the-road-to-quic/
https://en.wikipedia.org/wiki/TCP_Fast_Open
https://blog.cloudflare.com/the-road-to-quic/

5

HTTP/3 in Load Balancers
● Architecture (without frontend/backend, lets call it service for the moment)

Users

Load balancer

DB

Service
Instance 1

Service
Instance 2

anything
HTTP/3

6

HTTP/3 in Load Balancers
● Nginx – not yet supported

● https://dsl.i.ost.ch uses Nginx, I have not yet enabled
HTTP/3
— 08.02.2023: Preview available [link]

● Caddy - supported
● Example configuration

● Rut with docker-compose

● Tell browser that we support HTTP/3 with Alt-Svc header
(localhost). Alternatively, use DNS to announce Alt-Svc [
link] (not yet ready)
— With headers, always need http1 or http2 in addition to http3

— DNS: new RR types with same info as in headers [link]

● Firefox / Chrome are caching aggressively,
to make it work, clean cache + restart browser

#docker-compose-http3.yml
version: '3.9'
services:
 caddy:
 image: caddy:latest
 container_name: caddy
 volumes:
 - ./Caddyfile-http3:/etc/caddy/Caddyfile
 ports:
 - 80:80
 - 443:443
 - "443:443/udp"
 restart: unless-stopped

#Caddyfile-http3
localhost:443 {
 respond "Hello, world! You're using {http.request.proto}"
 header Alt-Svc: h3=":443"; ma=86400
}

https://dsl.i.ost.ch/
https://www.nginx.com/blog/binary-packages-for-preview-nginx-quic-http3-implementation/
https://datatracker.ietf.org/doc/html/draft-ietf-dnsop-svcb-https
https://blog.cloudflare.com/speeding-up-https-and-http-3-negotiation-with-dns/

7

HTTP/3 in Load Balancers
● Caddy / Nginx not only LB / RP, also

webservers, unlike HA Proxy, Traefik

● HA Proxy
● Experimantal [link]

● Services also HTTP/3?
— No required, but possible [link]

● Traefik
● Experimental [link]

● Config in docker-compose [link]

https://www.haproxy.com/blog/announcing-haproxy-2-6/

https://www.haproxy.com/blog/announcing-haproxy-2-6/
https://serverfault.com/questions/1117608/how-to-setup-haproxy-to-connect-to-backend-server-using-http-3-quic
https://doc.traefik.io/traefik/routing/entrypoints/#http3
https://doc.traefik.io/traefik/user-guides/docker-compose/basic-example/
https://www.haproxy.com/blog/announcing-haproxy-2-6/

	Slide 1
	Slide 2
	QUIC
	QUIC (2)
	Slide 5
	Slide 6
	Slide 7

