
27.02.2023

Distributed Systems (DSy)
Monorepos vs. Polyrepos (Multirepo)

Thomas Bocek



Distributed Systems2

Learning Goals
● Lecture 3 (Repositories)

● What is a monorepo, what is a polyrepo?

● When to use which type?



Distributed Systems3

Project Setup
● Project setup the wrong way:

● https://github.com/tbocek/DSy

● Everything (Java, Golang, Javascript) flat in one 
directory – do not do this

● Split up

● Backend, frontend, service1, etc. in separate 
repositories

● ~1 technology per split

— Most likely you won’t have a frontend mix of frontend 

technologies e.g., Angular with Vue

— Sometimes you do :)

— Sometimes you have a script directory, with different 

languages (bash, javascript)

— Sometimes you don’t :)

https://github.com/tbocek/DSy


Distributed Systems4

Monorepo
● One repository for all projects

● 1 sub-directory with frontend, 1 sub-directory with 
backend, etc.

● Tools e.g., lerna - update dependencies, hoisting

● Other names: onerepo or unirepo

● Examples

● Simform

— Started with monorepo, switched to mulirepo, now with hybrid 

approch “you can’t blindly follow any approach”

● Google, Facebook, Twitter

— Use monorepos (others do not)

● Flatfeestack

— Uses hybrid approach, as not much cross-repository 

functionality needed (reduce complexity)

https://codefresh.io/continuous-integration/using-codefresh-with-mono-repos/ 

https://github.com/lerna/lerna
https://github.com/lerna/lerna/blob/main/doc/hoist.md
https://www.simform.com/blog/monorepo-vs-polyrepo/
https://medium.com/@mattklein123/monorepos-please-dont-e9a279be011b
https://github.com/flatfeestack/flatfeestack
https://codefresh.io/continuous-integration/using-codefresh-with-mono-repos/


Distributed Systems5

Polyrepo
● Multiple repositories for a project

● Frontend in a different repository than the 
backend

● Example: https://github.com/flatfeestack 

— Wip, not ready to make it public…

— Frontend: Svelte, npm

— Backend: Golang

● Other names: manyrepo or multirepo

● Sync via git submodules or via bash script

● Submodules: can also be used as dependency 
management

https://github.com/flatfeestack
https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://github.com/joelparkerhenderson/monorepo-vs-polyrepo#could-you-get-the-best-of-both-worlds-by-having-a-monorepo-of-submodules


Distributed Systems6

Pro/Cons - Opinion
● Monorepo

● Tight coupling of projects

— E.g., generating openapi.yml from backend, generate types for 

frontend → simply copy

● Everyone sees all code / commits

● Encourages code sharing within organization

● Scaling: large repos, specialized tooling

● Polyrepo

● Loose coupling of projects

— If you want to generate openapi.yml, you need access from the 

backend repository to the frontend (e.g., curl+token)

● Fine grained access control

● Encourages code sharing across organizations

● Scaling: many projects, special coordination

● Opinion: Accenture - “From my experience, for a smaller team, starting with mono-repo is 
always safe and easy to start. Large and distributed teams would benefit more from poly-repo”

● My opinion: for small teams and “independent” project, use polyrepo. (I worked with small teams 
with mono and polyrepo, I have worked in big projects with polyrepos, but never in a big project 
with monorepos). If you have a tight coupling between projects (OpenAPI), use monorepos.

● Other opinion (sales pitch): https://monorepo.tools 

K
ey

 D
iff

er
en

ce
s 

https://www.accenture.com/us-en/blogs/software-engineering-blog/how-to-choose-between-mono-repo-and-poly-repo
https://monorepo.tools/
https://github.com/joelparkerhenderson/monorepo-vs-polyrepo#key-differences

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

