
04.05.2022

Distributed Systems (DSy)
Deployment

Thomas Bocek



Distributed Systems

Learning Goals
● Lecture 9 (Deployment)

● Different ways to deploy your service

● Cloud Operations [link]

https://www.linkedin.com/feed/update/urn:li:activity:6925178018772508672/?updateEntityUrn=urn%3Ali%3Afs_feedUpdate%3A%28V2%2Curn%3Ali%3Aactivity%3A6925178018772508672%29


Distributed Systems

Back in the old days…
● OTS: apt-get / yum / pacman install 

package, e.g., Apache – configure – run

● Custom SW: Java: war, provide custom 
/etc/init.d script with binary or script

● Problem:
● It runs on my machine, who installs Java in the 

right version?

● What happens on crashes?

● Scaling? 

● HW defect?

● Misconfiguration - access to complete PC?

● VMs / Containers help a lot
● No access to complete PC, can scale, move to 

another machine, pre-install the right Java version

● So, how to deploy your app?
● Ansible (Progress Chef, Puppet) - and more

— Playbooks with ssh host list – your host needs to run the 
same OS (apt/yum)

● Docker Swarm
— Works with docker-compose.yml – with docker you 

package your application the same way on any platform

● Kubernetes
— Widespread

https://en.wikipedia.org/wiki/Out_of_the_box_(feature)
https://en.wikipedia.org/wiki/WAR_(file_format)
https://en.wikipedia.org/wiki/Ansible_(software)
https://en.wikipedia.org/wiki/Progress_Chef
https://en.wikipedia.org/wiki/Puppet_(software)
https://en.wikipedia.org/wiki/Comparison_of_open-source_configuration_management_software


Distributed Systems

Docker Swarm
● Use docker --context to run/maintain containers on 

other machines
● Does not work for docker-compose, could be used with 

Ansible… “Ansible is also great for bootstrapping Docker 
itself” [source]

● Docker Swarm
• Deploy with docker-compose.yml (deploy:)

• Built into docker

- docker swarm – manage swarm

- docker node – manage nodes

• Scheduler is responsible for placement of containers to 
nodes

● Can use the same files, easy to setup?
— Azure, Google cloud, Amazon

● Kubernetes vs. Docker Swarm

● “Docker Swarm has already lost the battle 
against Kubernetes for supremacy in the 
container orchestration space” [link]

● “Kubernetes supports higher demands with 
more complexity while Docker Swarm offers 
a simple solution that is quick to get started 
with.” [link]

https://nickjanetakis.com/blog/docker-and-ansible-solve-2-different-problems-and-they-can-be-used-together
https://codeblog.dotsandbrackets.com/docker-stack/
https://dockerswarm.rocks/
https://ddewaele.github.io/azure-docker/
https://medium.com/google-cloud/docker-swarm-on-google-cloud-platform-c9925bd7863c
https://stelligent.com/2017/02/21/docker-swarm-mode-on-aws/
https://sensu.io/blog/kubernetes-vs-docker-swarm
https://ikarus.sg/docker-to-swarm/
https://thenewstack.io/kubernetes-vs-docker-swarm-whats-the-difference/


5

Docker Swarm
● 3 “Machines”

● KVM instances, alpine running
— Workers: 192.168.1.238, 192.168.1.103, 

192.168.1.173

— Manager: 192.168.1.166

● Run on manager
● docker swarm init --advertise-addr 

192.168.1.166

● To add a worker to this swarm, run the 
following command:
● docker swarm join --token .. 192.168.1.166

● docker info

● docker node ls

● Manager are setup
● Join nodes

● Run the docker swarm join command

● docker node ls

● Workers are setup

https://docs.docker.com/engine/swarm/swarm-tutorial/create-swarm/
https://docs.docker.com/engine/swarm/swarm-tutorial/add-nodes/


Docker Swarm
• Create service

• docker service create --name registry --publish 
5000:5000 registry:2

• Where to find the docker image

• Check service
• docker service ls

• Many options in docker-compose
• docker stack deploy --compose-file docker-

compose.yml

Advanced Distributed Systems & Blockchain6

https://codefresh.io/docker-tutorial/deploy-docker-compose-v3-swarm-mode-cluster/


7

Docker Swarm
● Moved from docker-compose to swarm on 

digital ocean for THORWallet

+ It works, it was fast

- Annoying limitations: show real IPs in our load 
balancer [issue] - probably there are more...

● Logtail.com for collecting logfiles from the 
containers – vector.dev to to send it from our 
containers to logtail
● Logs are important for failure analysis, 

statistics. The more services, the more is 
aggregation important

https://github.com/moby/moby/issues/25526
https://logtail.com/
https://vector.dev/


Kubernetes
● Kubernetes, K8s 

● Container orchestration (docker)
— Automated deployment, scaling

● Started by Google, now with CNCF

● Kubernetes-based PaaS
● Google, Amazon, Azure (book), Digital Ocean, 

…
— Difficult pricing schemes

● 1.0 released in 2015

● Package manager Helm released in
2016 (convert docker-compose)

● Why Kubernetes?
● Containers can crash, machine that runs 

container can crash (e.g., out of memory)

● Development: run on one machine, 
deployment how and where to distribute?

● Kubernetes manages the lifecycle of 
containers

https://en.wikipedia.org/wiki/Kubernetes
https://en.wikipedia.org/wiki/Cloud_Native_Computing_Foundation
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/eks/?whats-new-cards.sort-by=item.additionalFields.postDateTime&whats-new-cards.sort-order=desc&eks-blogs.sort-by=item.additionalFields.createdDate&eks-blogs.sort-order=desc
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/resources/kubernetes-collection-host/
https://www.digitalocean.com/products/kubernetes/
https://geekflare.com/managed-kubernetes-platform/
https://georgepaw.medium.com/how-to-run-the-cheapest-kubernetes-cluster-at-1-per-day-9287abb90cee
https://helm.sh/docs/topics/charts/
https://kompose.io/user-guide/#alternative-conversions


9

Kubernetes
● Design principles

● Configuration is declarative – declare state with 
YAML/JSON
— “self-healing”

● Abstraction layer for distributed system
— Provides interface to interact with containers

● Immutable containers
— Don’t store state in a container. If a health check 

fails, Kubernetes removes the container and starts a 
new one

— Rollback applications, use older version of container
— SQL – may need to change schema

● Pod – one (or more close connected) 
container (long running)
● Job – short running

● Volume - directory accessible to all containers 
running in a Pod

● Deployment – define scale, HW limits
● Service – singe entry point (internal), define a 

set of Pods
● Ingress – expose end points / external access
● Namespaces – run multiple projects on one 

cluster, separate with namespaces

https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/controllers/job/
https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/


10

Kubernetes
● Minikube, k3s

● Kubernetes master / server / control plane

● Kubernetes worker / nodes / agent / compute 
machine

● Deploy any containerized application
● Better use health endpoints

— Liveness/Readiness

● Youtube course

Kubernetes 
Master

Kubernetes 
Worker

Kubernetes 
Worker

Kubernetes 
Worker

P
od

P
od

Deployment

P
od

P
od

Deployment

Service Service

Ingress

https://minikube.sigs.k8s.io/docs/start/
https://k3s.io/
https://loft.sh/blog/kubernetes-probes-startup-liveness-readiness/
https://www.youtube.com/watch?v=X48VuDVv0do


11 Advanced Distributed Systems & Blockchain


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Docker Swarm (2)
	Slide 7
	Kubernetes
	Kubernetes (2)
	Kubernetes (3)
	Slide 11

