
21.04.2022

Distributed Systems (DSy)
Classic Consensus

Thomas Bocek

Distributed Systems

Learning Goals
● Lecture 8 (Consistency)

● How to achieve consistency in “classical”
distributed systems?

● Different algorithms to achieve consistency

Distributed Systems

Distributed Systems Categorization - L02S09
“Controlled” Distributed Systems

● Consistency
● Leader election (Zookeeper, Paxos, Raft)

● Replication principles
● More replicas: higher availability, higher

reliability, higher performance, better
scalability, but: requires maintaining
consistency in replicas

● Transparency principles apply

“Fully” Decentralized Systems

● Consistency
● Weak consistency: DHTs

● Nakamoto consensus (aka proof of work)

● Proof of stake – Leader election, PBFT protocols
Is Bitcoin eventually consistent?
— Some argue no, some argue it has even stronger

guarantees [link]

● Replication principles apply to fully decentralized
systems as well

● Transparency principles apply

https://hackingdistributed.com/2016/03/01/bitcoin-guarantees-strong-not-eventual-consistency/

Distributed Systems

● Definition: Consensus decision-making is a
group decision-making process in which group
members develop, and agree to support a
decision in the best interest of the whole.

● A Byzantine fault is an arbitrary fault that occurs
during the execution of an algorithm by a
distributed system
● Not only crash, but lie or even collude to reach an

advantage

● “Controlled” Distributed Systems: your own
nodes, your control, no collusion

● Find consensus
● Paxos, Raft, vDHT, Zookeeper

● Often: consensus defines leader
● Leader creates block

● Leader adds data

● Leader creates version

● How to find a leader?

source

Arbitrary faults, but no collusion

Consensus

https://en.wikipedia.org/wiki/Byzantine_fault
https://www.youtube.com/watch?v=s8Wbt0b8bwY

Distributed Systems

Paxos History
● Leslie Lamport discovered the Paxos

algorithm in late 1980s
● Attempt to prove that there was no such

algorithm which can tolerate the failure of any
number of its processes

● Until he realized that he created working
protocol

● Wrote paper and submitted it to Transactions on Computer
Systems (TOCS) in 1990
● Reviewer: was mildly interesting, but needs significant

improvement

● Leslie Lamport: “so I did nothing with the paper”

● People started to using Paxos to solve problems in
distributed systems

● Resubmitted in 1998 to TOCS
● Accepted without any major changes

● Paxos paper won an ACM SIGOPS Hall of Fame Award in
2012

● Received Turing award in 2013 , also due to Paxos
● “Turing Award is generally recognized as the highest distinction

in computer science and the "Nobel Prize of computing”“ [link]

source

http://lamport.azurewebsites.net/pubs/pubs.html#lamport-paxos
http://lamport.azurewebsites.net/pubs/pubs.html#lamport-paxos
http://lamport.azurewebsites.net/pubs/pubs.html#lamport-paxos
https://amturing.acm.org/award_winners/lamport_1205376.cfm
https://en.wikipedia.org/wiki/Turing_Award
http://www.lamport.org/

Distributed Systems6

Paxos Consensus
● Paxos: considered difficult to understand

● “This website explains the infamously difficult to
understand Paxos consensus protocol” [link]

● “Paxos, a really beautiful protocol for distributed
consensus” [link]

● “Paxos is an algorithm whose entire behaviour is
subtly difficult to grasp” [link]

● Problem: want reliable computing,
● But: have unreliable components

● Due to unreliable components, run multiple
components, i.e, multiple servers
● Replica: inconsistent state

● Paxos guarantees that nodes will only ever choose a
single value, but does not guarantee that a value will
be chosen if a majority of nodes are unavailable

● Roles: proposer, acceptor, and learner
● Proposer proposes a value that it wants agreement upon

● Acceptor gets proposal, makes promises, sends result to
learners

● Learners: majority of acceptors must choose the same
value

● 2 phases: prepare/promise phase, accept phase

http://paxos.systems/
http://www.goodmath.org/blog/2015/01/30/paxos-a-really-beautiful-protocol-for-distributed-consensus/
https://www.the-paper-trail.org/post/2009-02-03-consensus-protocols-paxos/

Distributed Systems

Paxos Example
● Proposer: prepare and accept requests, proposal

number and value (n, v) [link]
● Acceptor: already seen higher proposal number: ignore

● Acceptor: seen lower proposal number: send back
highest accepted n,v.

● Proposer A and proposer B
● Acceptor Z receives B before A

● If acceptor receiving a prepare request for the first
time
● Acceptor responds with a prepare response

● Promises never to accept another proposal with a lower
proposal number

https://medium.com/@angusmacdonald/paxos-by-example-66d934e18522

Distributed Systems

Paxos Consensus
● Acceptor Z receives proposer A’s request, and

acceptors X and Y receive proposer B’s
request.
● Only accept requests with higher number,

Acceptor Z not sending response (or negative
response) to B.

● Proposer B sends an accept request to each
acceptor containing the proposal number it
previously used (n=4) and the value associated
with the highest proposal number among the
prepare response messages it received (v=8)

● Proposer A sends its accept request before
proposer B, but acceptor ignores them

Distributed Systems

Paxos Consensus
● If an acceptor receives an accept request for a higher

or equal proposal number than it has already seen, it
accepts and sends a notification to every learner node.
● A value is chosen by the Paxos algorithm when a learner

discovers that a majority of acceptors have accepted a
value

● Once a value is chosen by Paxos, communication with
other proposers cannot change value

● If another proposer, sends a higher proposal number than
has previously been seen, with a different value (e.g., n=6,
v=7), each acceptor responds with the previous highest
proposal (n=4, v=8)

● This requires the proposer to send an accept request
containing [n=6, v=8], which confirms the value that has
already been chosen

● Leader election: the leader is the
node that has its data chosen by the
Paxos instance [link] - youtube

https://stackoverflow.com/a/23818161
https://www.youtube.com/watch?v=UUQ8xYWR4do

Distributed Systems

Raft (multi paxos)
● “this makes Raft more understandable than

Paxos and also provides a better foundation
for building practical systems.” [link]

● RAFT: Reliable, Replicated, Redundant, And
Fault-Tolerant

● Follower, Candidate, Leader [link]
● Raft implements leadership election,

● Once a leader has been elected, all decision-
making within the protocol will then be driven
only by the leader

● Only one leader can exist at a single time

● Each follower has a timeout (typically
between 150 and 300 ms) in which it
expects the heartbeat from the leader.
● The system is only available when a leader has

been elected and is alive

● Otherwise, a new leader will be elected and the
system will remain unavailable for the duration
of the vote

● Starts election by increasing term counter,
voting for itself, and sending a message to all
other servers requesting their vote

● If a higher term is received, become follower, if
not, leader

https://raft.github.io/raft.pdf
https://en.wikipedia.org/wiki/Raft_(computer_science)
http://thesecretlivesofdata.com/raft/

Distributed Systems

Consistency
● Consistency in DHTs – vDHT, similarities to Paxos

● Number = versions, for doing updates

● Simplified roles (peer)

● No leader election, works well with churn (not heavy churn)

● CoW, software transactional memory (STM) → for consistent updates. Works for light churn

https://en.wikipedia.org/wiki/Copy-on-write
https://en.wikipedia.org/wiki/Software_transactional_memory

Distributed Systems

Consistency
● vDHT Basics

● No locking, no timestamps

● Every update – new version
— 1. get() latest version, check if all replica peers

have latest version, if not wait and try again

— - may add delay

— + wait until update is completed

— 2. put() prepared with data and short TTL, if status
is OK on all replica peers, go ahead, otherwise,
remove the data and go to step 1.
— Data can be either send now or with the

confirm, if sent now we are optimistic

— Peer marks the value as prepared, other put()
fail on that key. If nothing happens, TTL

— Value linked to previous version(s) (hash)

— 3. put() confirmed, don’t send the data, just
remove the prepared flag and reset TTL

● In case of heavy churn, API user needs to
resolve
● Get latest version may return fork

● Abort or resolve (join) manually

	Slide 1
	Slide 2
	Slide 3
	Consensus (last weeks lecture)
	Paxos History
	Paxos consensus_clipboard0
	Paxos consensus_clipboard1
	Paxos consensus_clipboard2
	Paxos consensus
	Raft (multi paxos)
	Consistency_clipboard3
	Consistency

