
09.09.2025

QOTP
The Quite Ok Transport Protocol

Thomas Bocek

CSG Research Retreat 20252

About Me / Introduction
● Professor of Computer Science (Architecture,

Distributed Systems, Blockchain) at OST

● Architucture, Distributed systems, Blockchains

● On YouTube, since Corona

— Like and subscribe 😀

https://dsl.i.ost.ch/lect/
https://www.youtube.com/@tomp2p

CSG Research Retreat 20253

PhD Topic
● Included TomP2P, a DHT implemented in

Java (archived)

● Used TCP, but TCP has many issues…

● Not P2P friendly (hole-punching) – predict
sequence numbers (besides predicting ports)

● “too many open files in system”, 2 files per
TCP connection

● “time wait state” - TCP connection termination
process → port exhaustion - issues with many
short lived connections

https://github.com/tomp2p/TomP2P
https://www.alibabacloud.com/help/en/alinux/user-guide/change-the-tcp-time-wait-timeout-period

CSG Research Retreat 20254

Alternatives?
● KCP - no encryption, GFCP - a KCP variant,

UDT - unmaintained

● utp4j - Micro Transport Protocol for Java –
handed over to tribler (Delft University of
Technology)

● 0-RTT Protocol in Golang [link]

● ATP – A P2P Protocol [link]

● P2P Library in Golang (BA) [link] [link]

● QUIC – clever ways to save bytes, but
comes with complexity

https://github.com/skywind3000/kcp
https://github.com/johnsonjh/gfcp
https://en.wikipedia.org/wiki/UDP-based_Data_Transfer_Protocol
https://github.com/Tribler/utp4j
https://www.tribler.org/
https://eprints.ost.ch/id/eprint/846/
https://eprints.ost.ch/id/eprint/879/
https://eprints.ost.ch/id/eprint/979/
https://github.com/stalder-n/lrp2p-go
https://github.com/quic-go/quic-go

CSG Research Retreat 20255

Complexity
● I like simple solutions, e.g.,

● QOI – simpler version of PNG

● Encoder / decoder in 300 loc

● PNG generates smaller images [link], QOI
is much faster

● Specification: 1 page

— PNG – dictionary based compression with

Huffman coding, 92 pages

● Compression not much worse, but a lot
simpler

https://qoiformat.org/
https://qoiformat.org/benchmark/
https://qoiformat.org/qoi-specification.pdf
http://www.libpng.org/pub/png/spec/1.2/png-1.2.pdf

CSG Research Retreat 20256

Lets Implement a P2P Friently Transport Protocol!
● I can implement it with AI

● Learn working with LLMs

● Testing local and remote LLMs

● So, I vibecoded it

● “Hey ChatGPT, I need a protocol
implementation in golang that is simpler than
QUIC”

● ... it did not work

● But at least, ChatGPT told me its a great idea!

● Working with LLMs

● Iterate, iterate, iterate

● Understand what the LLM generated and improve or

discard it

● Very good at “semi-automated” tasks

— “Write a sortedmap / linkedmap in golang” → very good

— “For this code, write me testcases” → okish, but need to

verify

● Very bad at “thinking”

— “Implement rcv_wnd in an efficint manner” → no chance

— “Where in the code is the best place to add XYZ” → you

will get some random location

CSG Research Retreat 20257

QUIC vs. QOTP

● QUIC

● Variable-length integer encoding:

— First 2 bits | Total Length | Value Range

-------------|--------------|-------------

00 | 1 byte | 0 to 63

01 | 2 bytes | 0 to 16,383

10 | 4 bytes | 0 to 1,073,741,823

11 | 8 bytes | 0 to 4,611,686,018,427,387,903

● Max. 62bit, complicated in my implementation:
not knowing the size beforehand

● QOTP: 1 byte paket header defines size

● Knowing the size beforehand

● QOTP

● Bit 1-2 in packet header:

— 00: No ACK/Data with 24bit → 8 bytes

01: No ACK/Data with 48bit → 11 bytes

10: ACK with 24bit/Data with 24bit → 17 bytes

11: ACK with 48bit/Data with 48bit → 23 bytes

● QUIC Flow Control

● Connection based flow control with varint

● Stream based flow control with varint

● QOTP Bit 3-7 in packet header only congestion:

— 0 | 0-511 | 0

1 | 512-1023 | 768

2 | 1024-2047 | 1536 (1.5KB)

17 | 33554432-67108863 | 50331648 (48MB)

30 | 274877906944+ | 412316860416 (384GB)

● Necessary to know the exact receiver window?

CSG Research Retreat 20258

QUIC vs. QOTP
● QUIC – Security built-in (TCP no security)

● TLS 1.3

● Key Exchange Algorithms - secp256r1, secp384r1,
secp521r1, X25519, X448

● Symmetric Encryption + Integrity –
AES_128_GCM_SHA256, AES_256_GCM_SHA384,
CHACHA20_POLY1305_SHA256

● Digital Signatures – RSA-PSS-RSAE-SHA256, RSA-
PSS-RSAE-SHA384, RSA-PSS-RSAE-SHA512,
ecdsa_secp256r1_sha256, ecdsa_secp384r1_sha384,
ed25519, ed448

● Key Derivation – HKDF-SHA256, HKDF-SHA384

● TLS: 9 primary RFCs and 48 extensions and
informational RFCs, totalling 57 RFC [wikipedia]

● QOTP – Security built-in

● X25519, CHACHA20_POLY1305_SHA256

— No key renegotiation

https://en.wikipedia.org/wiki/Transport_Layer_Security

CSG Research Retreat 20259

QOTP Features
● 1 byte crypto header → exact size known

● 1 byte protocol header → exact size known

● First crypto key exchange can be out of
band (e.g., TXT field of DNS), or in band

● 0-RTT possible (no perfect forward secrecty +
first packet filled to max ~1400 bytes)

● Always encrypted

● Stream support, flow control on connection
only

● Congestion control: BBR (Bottleneck
Bandwidth and Round-trip propagation time)

● No delayed Ack – 1 ACK = 1 packet

● Simpler time measurement, simpler header

● FIN/ACK teardown with timeout

● Not yet implemented

● MTU detection

● Not yet implemented

● Less than 3k LoC

CSG Research Retreat 202510

Goals
● Make SPAs load faster

● 1st packet: GET request

● 1st reply: compressed HTML/Javascript in
~1.3KB with relevant Fetch requests

● /api call with the 2nd packet

● Current approach: SPAs with backend
rendering (SvelteKit, Next.js)

● Go back to no backend rendering

● PrevelteKit

● Server-Side Pre Rendering (SSPR) with
hydration / jdom

● qh:// - current Bachelor Thesis

● Quite Ok HTTP on top of QOTP

● No Let’s encrypt

— Key material via DNS TXT record

● Certificates needed?

— Yes/no, but never for encryption, for signatures

— Where to put? Trailer: Signature, Certificate

— Streaming? Transfer-Encoding: chunked

— No need for Oracles in the blockchain world →

JSON signed by qh:// if certificate provided

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://github.com/tbocek/preveltekit

CSG Research Retreat 202511

Questions?

 Prof. Dr. Thomas Bocek

thomas.bocek@ost.ch

mailto:thomas.bocek@ost.ch

