OST

Eastern Switzerland
University of Applied Sciences

The Quite Ok Transport Protocol

Thomas Bocek
09.09.2025

OST

Eastern Switzerland
University of Applied Sciences

About Me | Introduction

* Professor of Computer Science (Architecture,
Distributed Systems, Blockchain) at OST

 Architucture, Distributed systems, Blockchains

©YouTube o Search Q

« On YouTube, since Corona foete 0 @

{=

. . @ Home
— Like and subscribe &) B o
5] subscriptions
O History .] .
S Pl Distributed Systems & Blockchain Channel

& . id @tomp2p - 151 subscribers - 271 videos
our videos

Lecture Videos from Distributed Systems & Blockchain ...more

® Watch later
dsl.i.ost.ch

5 Liked videos

Customize channel Manage videos
i Downloads
Home Videos Playlists Posts Q

Subscriptions >

9 Don McMillan

2. Axelra Youtube

a Urs Bolt

@ caiinquest Blockchain (BICH)

For You

Explore

I of Smarlc ! an:l

2 CSG Research Retreat 2025 ﬂ Music Blockchain Lecture - Sui : Blockchain Lecture - NFTs i Distributed Systems Lecture - Blockchain, Bitcoin : Distributed Systems Lecture - Doc

B Movies&Tv 35 views + 9 months ago 29 views + 10 months ago 23 views + 3 months ago 37 views + 6 months ago

https://dsl.i.ost.ch/lect/
https://www.youtube.com/@tomp2p

Thomas Bocek

PhD Topic
e Included TomP2P, a DHT implemented in PeerCollaboration: A Peer-to-Peer
Java (archived) Collaboration Application for

Large-scale Systems

Used TCP, but TCP has many issues...

Not P2P friendly (hole-punching) — predict
sequence numbers (besides predicting ports)

+ “too many open files in system”, 2 files per
TCP connection

[root@1l2core gotpl# ulimit -n

1024

« “time wait state” - TCP connection termination
process — port exhaustion - issues with many
short lived connections

3 | CSG Research Retreat 2025

https://github.com/tomp2p/TomP2P
https://www.alibabacloud.com/help/en/alinux/user-guide/change-the-tcp-time-wait-timeout-period

Alternatives?

 KCP - no encryption, GFCP - a KCP variant,
UDT - unmaintained

* utp4j - Micro Transport Protocol for Java —
handed over to tribler (Delft University of
Technology)

* O-RTT Protocol in Golang [link]
« ATP — A P2P Protocol [link]
« P2P Library in Golang (BA) [link] [link]

QUIC

* QUIC - clever ways to save bytes, but
comes with complexity

4 | CSG Research Retreat 2025 O OST

https://github.com/skywind3000/kcp
https://github.com/johnsonjh/gfcp
https://en.wikipedia.org/wiki/UDP-based_Data_Transfer_Protocol
https://github.com/Tribler/utp4j
https://www.tribler.org/
https://eprints.ost.ch/id/eprint/846/
https://eprints.ost.ch/id/eprint/879/
https://eprints.ost.ch/id/eprint/979/
https://github.com/stalder-n/lrp2p-go
https://github.com/quic-go/quic-go

5

Complexity
| like simple solutions, e.q.,

* QOI —simpler version of PNG
« Encoder / decoder in 300 loc

* PNG generates smaller images [link], QOI
IS much faster

-+ Specification: 1 page

— PNG - dictionary based compression with
Huffman coding, 92 pages

- Compression not much worse, but a lot
simpler

CSG Research Retreat 2025

A 0OI file consists of a l4-byte header, followed by any number of
data “chunks™ and an B-byte end marker.

qoi_header [
char magic[4]; /F megic bytes “goif
uint3Z_t width; JF imsge width in pixels (EE]
uint3Z_t height: 4 imsge height in pizels (BE)

uint® t chammels; /3 = RGE, 4 = RGAA
uint® t colorspace; /f @ = sRGE with Linear alpha
#F 1 = all channels linear
I

The colerspace and channel fislds are purely infermative. They do
not change the way data chunks are encoded.

Images are encoded row by row, left te right, top to bottom. The
decoder and encoder stert with {r: 8, g: 8, b: B, a: 235} as the
previcus pixel valus. An lmage 15 complete when a1l piwels speci-
fied by width * height have besn cowered. Pixels are encoded as:

= a rm of the previous pisel

= an index into an array of previously seen pixels
* a gifference to the previcus pixel value in r.g.b
= full r.g,b or r.g.b,a values

The color channels sre sssumed to not be presultiplisd with the
alpha channel [“un-presultiplis=d alpha™).

A running array[@4] {rero-initislized) of previowsly seen plasl
values is maintained by the encoder and decoder. Each pixel that i
seen by the encoder snd decoder is put imbto this array at the
position formed by a hash fumnction of the color wvalwe. In the
encoder, if the piwel value at the index matches the current piwel
this ingdex position 1 written to the stress as QOX_OP_IMDEX. The
hash function for the index fs:

index_position = (r* 3+ @ * 3+ b *T+a*11) %04

Each chumk starts with a 2- or &-bit tag, followed by 8 number of
data bits. The bit Length of chunks is divisible by & . i.e. all
chunks are byte aligned. ALl w
the most significant bit om the Left. The B-bit tags have
precedence over the Z.bit tags. A decoder must check for the
presence of an B-bit tag Tirst.

The byte stream's e=nd 15 marksd with 7 @8 bytes followed by &
single @xBl byte.

The possible chunks are:

— [0I_OF_RGE T T T 1
| Byte[8] Eyte[l] | Eyte[2] | Eyke[3] |
| 7 &3 43 218 7.8 [7T..8 |[7..8 |
| h I , |
1) T T T

] 12111118 red | green | Blee |
L I I I

-bit tag bll111118
-bit red channel walue
-bit gresn channel walue
-bit bBlue channel value

The alphs walue remsins unchanged from the previcus pilxel.

lues encoded in these data bits hawe

— U0I_OF_RGEA T T
Byte[8] Eyte[1] | Eybe[2]

| THE QUITE OK IMAGE FORMAT

Specification Wersiom 1.8, 2822.81.83 - goiformat.org — Dominic Szablewskl

— GO0T_0F_IMDEX ——

78 3 4312 18

B a8 index

2-bit tag DR
B-bit index into the color index array: @..63

k valid encoder mest not isswe Z or more consecutive OOI_OP_IMDEX
chunks to the same index. OOI OF RUN should be used instead.

— 00I_OF_DIFF ————
| Eyte[d] |
| 7 &3 432 18|

———————
| 8 2| dr | dg | «b |
| NS R S E—

-bit tag bEL

-bit red channel difference from the previous pixel
-bit gresn channel difference from the previous pimel -
-bit blus channel difference from the previous plxel

TR

The difference to the current channel walues are wsing 2 wraparound
operation, so0 1 - 2 Will result in 233, while 233 + 1 wWill result
in B.

Values are stored as unsigned integers with & blas of 2. E.g. -2
is stored as 8 [b8@). 1 is stored as 3 (B11].

The alphs value remains unchangsd from the previcus pixel.

— OO0I_OF_LUMA
Eyte[d]
786 3 4 3 2 18

Byte[l1]
THE 34321680

1 @& | diff green dr - dg | db - dg

-bit tag ole

-bit gresn channel difference from the previous pixel -32..31
-bit red channel difference minus gres=n channel difference -3..
-bit bluz channel difference minus gresn channel difference -8..

The green channel is used to indicate the general direction of
change and is encoded in @ bits. The red and blue channels (dr
and db) base their diffs off of the green channel difference. I.e.:

dr_dg = Cur_px.r - prev_pE.r] - [<ur_px.g - prev_px.gl

db dg = fcur_px.b - prew_px.b] - {cwr_px.g - prev_px.gl
The difference to the Current channel walues are Using B wWraparound
operaticn, so 18 - 13 will result in 233, while 238 + 7 will result
in 1.

Values are stored as unsigned integers with a bias of 32 for the
green channel and a bias of 8 for the red and blue channel.

The alphs value remains unchanged from the previess plrel.

— QOI_OP_RUN ———————

T T 1
| | Eyte[3] | Eyte[4] | | Byte[d] [
| 7 & 3 4 3 218]|7..8 |[7..8 |[7T..8 |[7..8| | 7 & 3 432 18|
I h h : h I I
I T T T T | I I
|] 11111111 red | green | Blee | alpha | | 1 1] rum |
L h L h H L H

B-bit tag bllllllll
B-bit red channal
B-bit gre=n chanmel
B-bit blue chanmel
B-bit alpha channel

2-bit tag bll
G-bit ren-length repsating the previgues pixel: 1..632

The rum-length is stored with & biss of -1. Mote that the rum-
lengths &2 &nd 04 (Bl11118 and B111111) &re 1llegal &5 They are
occupied by The QOI_OP_RGE and QOI_OP_RGBA Tags.

https://qoiformat.org/
https://qoiformat.org/benchmark/
https://qoiformat.org/qoi-specification.pdf
http://www.libpng.org/pub/png/spec/1.2/png-1.2.pdf

Lets Implement a P2P Friently Transport Protocol!

* | can implement it with Al « Working with LLMs

e Learn Working with LLMs lterate, iterate, iterate

. Understand what the LLM generated and improve or
+ Testing local and remote LLMs J P

discard it
* So, | vibecoded it . Very good at “semi-automated” tasks
+ “Hey ChatGPT, | need a protocol - “Write a sortedmap / linkedmap in golang” — very good
implementation in golang that is simpler than — “For this code, write me testcases” — okish, but need to
QuUIC” verify
- ... it did not work * Very bad at “thinking”

. But at least, ChatGPT told me its a great idea! - “Implement rcv_wnd in an efficint manner” - no chance

- “Where in the code is the best place to add XYZ” - you
will get some random location

6 | CSG Research Retreat 2025 O OST

QUIC vs. QOTP . oorp

 QUIC » Bit 1-2 in packet header:

- 00: No ACK/Data with 24bit > 8 bytes

- Variable-length integer encoding:

01: No ACK/Data with 48bit » 11 bytes

10: ACK with 24bit/Data with 24bit > 17 bytes
- First 2 bits | Total Length | Value Range

11: ACK with 48bit/Data with 48bit > 23 bytes

e QUIC Flow Control

00 | 1 byte | © to 63
o1 | 2 bytes | 0 to 16,383 - Connection based flow control with varint
10 | 4 bytes | 0 to 1,073,741,823 - Stream based flow control with varint
11 | 8 bytes | © to 4,611,686,018,427,387,903 » QQOTP Bit 3-7 in packet header only congestion:
« Max. 62bit, complicated in my implementation: -~ e | 0-511 K
not knowing the size beforehand 1 | 51271023 | 768
2 | 1024-2047 | 1536 (1.5KB)
° QOTP 1 byte paket header deﬁnes Size 17 | 33554432-67108863 | 50331648 (48MB)
30 | 274877906944+ | 412316860416 (384GB)
* Knowing the size beforehand « Necessary to know the exact receiver window?

7 | CSG Research Retreat 2025 O OST

QUIC vs. QOTP

* QUIC — Security built-in (TCP no security) e QOTP — Security built-in
© TS 13 . X25519, CHACHA20 POLY1305 SHA256
- Key Exchange Algorithms - secp256r1, secp384rl, o
secp521rl, X25519, X448 ~ No key renegotiation

Symmetric Encryption + Integrity —
AES 128 GCM_SHA256, AES 256 _GCM_SHA384,
CHACHA20_POLY1305_SHA256

Digital Signatures — RSA-PSS-RSAE-SHA256, RSA-
PSS-RSAE-SHA384, RSA-PSS-RSAE-SHA512,
ecdsa_secp256rl _sha256, ecdsa_secp384rl sha384,
ed25519, ed448

Key Derivation — HKDF-SHA256, HKDF-SHA384

TLS: 9 primary RFCs and 48 extensions and
informational RFCs, totalling 57 RFC [wikipedia]

8 | CSG Research Retreat 2025 O OST

https://en.wikipedia.org/wiki/Transport_Layer_Security

QOTP Features

* 1 byte crypto header - exact size known

No delayed Ack — 1 ACK =1 packet

1 byte protocol header - exact size known * Simpler time measurement, simpler header

FIN/ACK teardown with timeout

* First crypto key exchange can be out of

band (e.g., TXT field of DNS), or in band . Not yet implemented

* 0-RTT possible (no perfect forward secrecty +
first packet filled to max ~1400 bytes)

MTU detection

* Not yet implemented

Less than 3k LoC

* Always encrypted

e Stream support, flow control on connection
only

* Congestion control: BBR (Bottleneck
Bandwidth and Round-trip propagation time)

9 | CSG Research Retreat 2025 O OST

Goals

* Make SPAs load faster e qgh:// - current Bachelor Thesis
« 1 packet: GET request * Quite Ok HTTP on top of QOTP
« 1 reply: compressed HTML/Javascript in * No Let’s encrypt

~1.3KB with relevant Fetch requests ~ Key material via DNS TXT record

- /api call with the 2" packet . Certificates needed?

* Current approach: SPAs with backend ~ Yes/no, but never for encryption, for signatures
rendering (SvelteKit, Next.js)

— Where to put? Trailer: Signature, Certificate

« Go back to no backend rendering — Streaming? Transfer-Encoding: chunked

e PrevelteKit — No need for Oracles in the blockchain world —

: _ _ JSON signed by gh:// if certificate provided
- Server-Side Pre Rendering (SSPR) with

hydration / jJdom

10 | CSG Research Retreat 2025 O OST

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://github.com/tbocek/preveltekit

Questions?

Prof. Dr. Thomas Bocek
thomas.bocek@ost.ch

11 | CSG Research Retreat 2025 O OST

mailto:thomas.bocek@ost.ch

