OST

Eastern Switzerland
University of Applied Sciences

The Quite Ok Transport Protocol

Thomas Bocek
20.05.2025

Thomas Bocek

PhD Topic
e Included TomP2P, a DHT implemented in PeerCollaboration: A Peer-to-Peer
Java Collaboration Application for

Large-scale Systems

Used TCP, but TCP has many issues...

Not P2P friendly (hole-punching) — predict
sequence numbers (besides predicting ports)

+ “too many open files in system”, 2 files per
TCP connection

draft ;tmp_ ulimit -n

1624

« “time wait state” - TCP connection termination
process — port exhaustion - issues with many
short lived connections

3 | HSG 2025

https://github.com/tomp2p/TomP2P
https://www.alibabacloud.com/help/en/alinux/user-guide/change-the-tcp-time-wait-timeout-period

Alternatives?

* KCP - no encryption, GFCP - a KCP variant,
UDT - unmaintained

* utp4j - Micro Transport Protocol for Java —
handed over to tribler (Delft University of
Technology)

* O-RTT Protocol in Golang [link]
- ATP — A P2P Protocol [link]
- P2P Library in Golang (BA) [link]

QUIC

* QUIC — complexity, good for low latency, but
can be slow (receiver-side processing
overhead)

4 | HSG 2025 O OST

https://github.com/skywind3000/kcp
https://github.com/johnsonjh/gfcp
https://en.wikipedia.org/wiki/UDP-based_Data_Transfer_Protocol
https://github.com/Tribler/utp4j
https://www.tribler.org/
https://eprints.ost.ch/id/eprint/846/
https://eprints.ost.ch/id/eprint/879/
https://eprints.ost.ch/id/eprint/979/
https://github.com/quic-go/quic-go
https://arxiv.org/pdf/2310.09423

5

Complexity
| like simple solutions, e.q.,

* QOI —simpler version of PNG
« Encoder / decoder in 300 loc

* PNG generates smaller images [link], QOl is
much faster

- Specification: 1 page
-~ QOIl - RLE

— PNG — dictionary based compression with
Huffman coding, 92 pages

« Compression not much worse, but much
simpler

HSG 2025

A 0OI file consists of a l4-byte header, #
data “chunks™ and an B-byte end marker.

lowed by any number of

qoi_header [
char magic[4]; /F megic bytes “goif
uint3Z_t width; JF imsge width in pixels (EE]
uint3Z_t height: 4 imsge height in pizels (BE)

uint®_t chaamels; /3 = RGE, 4 = RGEA
uint® t colorspace; /f @ = sRGE with Linear alpha
#F 1 = all channels linear
I

The colerspace and channel fislds are purely infermative. They do
not change the way data chunks are encoded.

Images are encoded row by row, left te right, top to bottom. The
decoder and encoder stert with {r: 8, g: 8, b: B, a: 235} as the
previcus pixel valus. An lmage 15 complete when a1l piwels speci-
fied by width * height have besn cowered. Pixels are encoded as:

= a rm of the previous pisel

= an index into an array of previously seen pixels
* a gifference to the previcus pixel value in r.g.b
= full r.g,b or r.g.b,a values

The color channels are assumed to not be presultipli=d with the

alpha channel [“un-presultiplis=d alpha™).

A running array[@4] {rero-initislized) of previowsly seen plasl
values is maintained by the encoder and decoder. Each pixel that i
seen by the encoder snd decoder is put imbto this array at the
position formed by a hash fumnction of the color wvalwe. In the
encoder, if the piwel value at the index matches the current piwel
this ingdex position 1 written to the stress as QOX_OP_IMDEX. The
hash function for the index fs:

index_position = (r* 3+ @ * 3+ b *T+a*11) %04

Each chumk starts with a 2- or &-bit tag, followed by 8 number of
data bits. The bit Length of chunks is divisible by & . i.e. all
chunks are byte aligned. ALl w
the most significant bit om the Left. The B-bit tags have
precedence over the Z.bit tags. A decoder must check for the
presence of an B-bit tag Tirst.

The byte stream's e=nd 15 marksd with 7 @8 bytes followed by &
single @xBl byte.

The possible chunks are:

— [0I_OF_RGE T T 1
| Byte[8] Eyte[l] | Eyte[2] | Eyke[3] |
| 7 &3 43 218 7.8 [7T..8 |[7..8 |
| I , |
1) T T

] 12111118 red | green | Blee |
L I I I

-bit tag bll111118
-bit red channel walue
-bit gresn channel walue
-bit bBlue channel value

The alphs walue remsins unchanged from the previcus pilxel.

lues encoded in these data bits hawe

— U0I_OF_RGEA T
Byte[8] Eyte[1] | Eybe[2]

| THE QUITE OK IMAGE FORMAT

Specification Wersiom 1.8, 2822.81.83 - goiformat.org — Dominic Szablewskl

— GO0T_0F_IMDEX ——

78 3 4312 18

B a8 index
2-bit tag beg
B-bit index into the color index array: @..63

k valid encoder mest not isswe Z or more consecutive OOI_OP_IMDEX
chunks to the same index. OOI OP RUN should be wsed 1 ead .

— 00I_OF_DIFF ————
| Eyte[d] |
| 7 &3 432 18|

———————
| 8 2| dr | dg | «b |
| NS R S E—

-bit tag bEL

-bit red channel difference from the previous
-bit gresn channel difference from the previous
-bit blus channel difference from the previous

TR

The difference to the current channel walues are wsing 2 wraparound
operaticn, 50 1 - 2 W11l result in 233, wWhile 233 + 1 wWill result
in B.

Values are stored as unsigned integers with & blas of 2. E.g. -2
is stored as 8 [b8@). 1 is stored as 3 (B11].

The alphs value remains unchangsd from the previcus pixel.

— OO0I_OF_LUMA
Eyte[d]
786 3 4 3 2 18

Byte[l1]
THE 34321680

1 @& | diff green dr - dg | db - dg

-bit tag ole

-bit gresn channel difference from the previous pixel -32..31
-bit red channel difference minus gres=n channel difference -3..
-bit bluz channel difference minus gresn channel difference -8..

The green channel is used to indicate the general direction of
change and is encoded in @ bits. The red and blue channels (dr
and db) base their diffs off of the green channel difference. I.e.:

dr_dg = Cur_px.r - prev_pE.r] - [<ur_px.g - prev_px.gl

db dg = fcur_px.b - prew_px.b] - {cwr_px.g - prev_px.gl
The difference to the Current channel walues are Using B wWraparound
operaticn, so 18 - 13 will result in 233, while 238 + 7 will result
in 1.

Values are stored as unsigned integers with a bias of 32 for the
green channel and a bias of 8 for the red and blue channel.

The alphs value remains unchanged from the previess plrel.

— QOI_OP_RUN ———————

T T 1
I | Byte]3] | Brte[s] | | Byte[d] I
| 7 & 3 4 3 218]|7..8 |[7..8 |[7T..8 |[7..8| | 7 & 3 432 18|
I h : h I I
I T T T | I I
|] 11111111 red | green | Blee | alpha | | 1 1] rum |
L h L h H L H

B-bit tag bllllllll

B-bit red channel value
B-bit gre=n channel walue
B
B

-bit bBlue chanmel
-bit alphs channel walue

2-bit tag bll
G-bit ren-length repsating the previgues pixel: 1..632

The rum-length is stored with & biss of -1. Mote that the rum-
lengths &2 &nd 04 (Bl11118 and B111111) &re 1llegal &5 They are
occupied by The QOI_OP_RGE and QOI_OP_RGBA Tags.

https://qoiformat.org/
https://qoiformat.org/benchmark/
https://qoiformat.org/qoi-specification.pdf
http://www.libpng.org/pub/png/spec/1.2/png-1.2.pdf

Transport protocol?

* Can we build a QOTP? * QOTP Features

. : - Always encrypted
« Opinionated — make reasonable assumptions Y P

— First message — no perfect forward secrecy if data in 1%t msg

- IMHO: low complexity - better than a few % ~ Endpoints identified by
more performance — Main: IP/Port/PubKey, get PubKey out-of-band e.g., from
DNS
¢ QOTP . |
— Backup: IP/Port, get PubKey in first message, no data in
- Based on previously gained knowledge 1% msg

0-RTT, but prevent amplification attacks

* Good project also to test GenAl — First packet is always full MTU

« Which tools work good, which not? . Streams
- Fast prototyping: e.g., experimented with RLE / — Simple stream teardown FIN/FINACK and timeouts
Bitmaps for ACK encoding... ~ No built-in keep alive
~ 2.4k LoC

6 | HSG 2025 O OST

https://github.com/tbocek/tomtp

Security
* QUIC — Security built-in (TCP no security) * QOTP — Security built-in

© TS 13 ¢ X25519, CHACHA20 POLY1305 SHA256
« Key Exchange Algorithms - secp256r1, secp384r1,
secp521rl, X25519, X448 * Ideally 1 page PDF as QOI

Symmetric Encryption + Integrity —
AES 128 GCM_SHA256, AES 256 _GCM_SHA384,
CHACHA20_POLY1305_SHA256

Digital Signatures — RSA-PSS-RSAE-SHA256, RSA-
PSS-RSAE-SHA384, RSA-PSS-RSAE-SHA512,
ecdsa_secp256rl _sha256, ecdsa_secp384rl sha384,
ed25519, ed448

Key Derivation — HKDF-SHA256, HKDF-SHA384

TLS: 9 primary RFCs and 48 extensions and
informational RFCs, totalling 57 RFC [wikipedia]

7 | HSG 2025 O OST

https://en.wikipedia.org/wiki/Transport_Layer_Security
https://github.com/tbocek/tomtp?tab=readme-ov-file#messages-format-encryption-layer

8

Comparison

* Format — space efficient

Short header / long header

Handshake + retry to prevent amp attacks

Variable-Length Fields
« Connection Id 8-20 bytes

Optional fields
+ SACK/ACK, token, RCV window

Uses 1-4 bytes nonce are transferred for
reordering, uses interally 62bit

HSG 2025

* Format - simplicity

1 header:

Handshake with full MTU to prevent amp

attacks

* No variable length fields, 1 optional field

* Uses 6 bytes nonce, always

OOST

Complexity

* Big save: 6 bytes nonce vs. 24 bytes nonce
[source]

+ 24 bytes nonce easier to implement, 12/6 leaks
information — double encrypt saves 18 bytes
overhead per paket ~1.3%

// NonceSize is the size of the nonce used with the standard variant of this
// AEAD, in bytes.

!/

// Note that this is too short to be safely generated at random if the same
// key 1s reused more than 232 times.

NonceSize = 12

// NonceSizeX is the size of the nonce used with the XChaCha2®8-Poly1385

// variant of this AEAD, in bytes.
NonceSizeX = 24

9 | HSG 2025

* 2-layer ChaCha20-Poly1305 encryption

1%t for payload using sequence-based nonce
(6 bytes, 48bit, on overflow, new ep. Keys)

— Encrypts payload, payload min size 8 bytes
2" for the sequence number itself

— First 24 bytes from initial encryption serves as
nonce to encrypt sequence number with
XchaCha20-Poly1305

— Encrypts 6 byte nonce, not using MAC, as already
in 1t encryption - prevents traffic analysis

— QUIC uses XOR masking...
Decryption works in reverse

~60 loc complexity

OOST

https://pkg.go.dev/golang.org/x/crypto/chacha20poly1305

Design Choices
* No delayed Ack — 1 ACK = 1 packet

TCP and QUIC have this to reduce overhead with
multi ACKs

QOTP: overhead - 1 packet with ACK, 74 bytes

Simpler: otherwise to measure time you need to
know delay from other side

* Do we need flow control?

Yes, rcv window sent all the time vs only when
changes — 6/8 bytes vs simplicity

« Congestion control: WIP

Bottleneck Bandwidth and Round-trip propagation
time (BBR)

Goal: same aggressiveness as TCP / QUIC

HSG 2025

gh://

Quite Ok HTTP on top of QOTP

No Let’s encrypt
— Key material via DNS TXT record

Certificates needed?

— Yes/no, but never for encryption, for signatures
— Where to put? Trailer: Signature, Certificate
— Streaming? Transfer-Encoding: chunked

— No need for Oracles in the blockchain world -
JSON signed by gh:// if certificate provided
- How to access?

Other questions: QPACK or zstd for header
compression?

OOST

Ultimate Goal

* Make SPA great again (single page * PrevelteKit
application) - Server-Side Pre Rendering (SSPR) with
15t packet: GET request hydration / jdom
1%t reply: compressed HTML/Javascript in - TODO: extract relevant Fetch requests, add to
~1.3KB with relevant Fetch requests front of the 1% reply

- 2.. reply packets: data/layout

e Make SPASs load faster

- SPA simplify backend and frontend
development

11 | HsG 2025 O OST

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://github.com/tbocek/preveltekit
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch

Questions?

=

Dr. Thomas Bocek
thomas.bocek@ost.ch

12 | HSG 2025 O OST

mailto:thomas.bocek@ost.ch

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

