
20.05.2025

QOTP
The Quite Ok Transport Protocol

Thomas Bocek



HSG 20253

PhD Topic
● Included TomP2P, a DHT implemented in 

Java

● Used TCP, but TCP has many issues…

● Not P2P friendly (hole-punching) – predict 
sequence numbers (besides predicting ports)

● “too many open files in system”, 2 files per 
TCP connection

● “time wait state” - TCP connection termination 
process → port exhaustion - issues with many 
short lived connections

https://github.com/tomp2p/TomP2P
https://www.alibabacloud.com/help/en/alinux/user-guide/change-the-tcp-time-wait-timeout-period


HSG 20254

Alternatives?
● KCP - no encryption, GFCP - a KCP variant, 

UDT - unmaintained

● utp4j - Micro Transport Protocol for Java – 
handed over to tribler (Delft University of 
Technology)

● 0-RTT Protocol in Golang [link]

● ATP – A P2P Protocol [link]

● P2P Library in Golang (BA) [link]

● QUIC – complexity, good for low latency, but 
can be slow (receiver-side processing 
overhead)

https://github.com/skywind3000/kcp
https://github.com/johnsonjh/gfcp
https://en.wikipedia.org/wiki/UDP-based_Data_Transfer_Protocol
https://github.com/Tribler/utp4j
https://www.tribler.org/
https://eprints.ost.ch/id/eprint/846/
https://eprints.ost.ch/id/eprint/879/
https://eprints.ost.ch/id/eprint/979/
https://github.com/quic-go/quic-go
https://arxiv.org/pdf/2310.09423


HSG 20255

Complexity
● I like simple solutions, e.g.,

● QOI – simpler version of PNG

● Encoder / decoder in 300 loc

● PNG generates smaller images [link], QOI is 
much faster

● Specification: 1 page

— QOI – RLE

— PNG – dictionary based compression with 

Huffman coding, 92 pages

● Compression not much worse, but much 
simpler

https://qoiformat.org/
https://qoiformat.org/benchmark/
https://qoiformat.org/qoi-specification.pdf
http://www.libpng.org/pub/png/spec/1.2/png-1.2.pdf


HSG 20256

Transport protocol?
● Can we build a QOTP?

● Opinionated – make reasonable assumptions

● IMHO: low complexity - better than a few % 
more performance

● QOTP

● Based on previously gained knowledge

● Good project also to test GenAI

● Which tools work good, which not?

● Fast prototyping: e.g., experimented with RLE / 
Bitmaps for ACK encoding...

● QOTP Features
● Always encrypted 

— First message – no perfect forward secrecy if data in 1st msg

— Endpoints identified by 
— Main: IP/Port/PubKey, get PubKey out-of-band e.g., from 

DNS
— Backup: IP/Port, get PubKey in first message, no data in 

1st msg

● 0-RTT, but prevent amplification attacks
— First packet is always full MTU

● Streams
— Simple stream teardown FIN/FINACK and timeouts

— No built-in keep alive

● ~ 2.4k LoC

https://github.com/tbocek/tomtp


HSG 20257

Security
● QUIC – Security built-in (TCP no security) ● QOTP – Security built-in

● TLS 1.3

● Key Exchange Algorithms - secp256r1, secp384r1, 
secp521r1, X25519, X448

● Symmetric Encryption + Integrity – 
AES_128_GCM_SHA256, AES_256_GCM_SHA384, 
CHACHA20_POLY1305_SHA256

● Digital Signatures – RSA-PSS-RSAE-SHA256, RSA-
PSS-RSAE-SHA384, RSA-PSS-RSAE-SHA512, 
ecdsa_secp256r1_sha256, ecdsa_secp384r1_sha384, 
ed25519, ed448

● Key Derivation – HKDF-SHA256, HKDF-SHA384

● TLS: 9 primary RFCs and 48 extensions and 
informational RFCs, totalling 57 RFC [wikipedia]

● X25519, CHACHA20_POLY1305_SHA256

● Ideally 1 page PDF as QOI

https://en.wikipedia.org/wiki/Transport_Layer_Security
https://github.com/tbocek/tomtp?tab=readme-ov-file#messages-format-encryption-layer


HSG 20258

Comparison
● Format – space efficient ● Format - simplicity

● Short header / long header

● Handshake + retry to prevent amp attacks

● Variable-Length Fields

● Connection Id 8-20 bytes

● Optional fields

● SACK / ACK, token, RCV window

● Uses 1-4 bytes nonce are transferred for 
reordering, uses interally 62bit

● 1 header: 

● Handshake with full MTU to prevent amp 
attacks

● No variable length fields, 1 optional field

● Uses 6 bytes nonce, always



HSG 20259

Complexity
● Big save: 6 bytes nonce vs. 24 bytes nonce 

[source]

● 24 bytes nonce easier to implement, 12/6 leaks 
information → double encrypt saves 18 bytes 
overhead per paket ~1.3%

● 2-layer ChaCha20-Poly1305 encryption
● 1st for payload using sequence-based nonce 

(6 bytes, 48bit, on overflow, new ep. Keys)

— Encrypts payload, payload min size 8 bytes

● 2nd for the sequence number itself

— First 24 bytes from initial encryption serves as 
nonce to encrypt sequence number with 
XchaCha20-Poly1305

— Encrypts 6 byte nonce, not using MAC, as already 
in 1st encryption - prevents traffic analysis

— QUIC uses XOR masking...

● Decryption works in reverse 

● ~60 loc complexity

https://pkg.go.dev/golang.org/x/crypto/chacha20poly1305


HSG 202510

Design Choices
● No delayed Ack – 1 ACK = 1 packet

● TCP and QUIC have this to reduce overhead with 
multi ACKs

● QOTP: overhead - 1 packet with ACK, 74 bytes
● Simpler: otherwise to measure time you need to 

know delay from other side

● Do we need flow control?
● Yes, rcv window sent all the time vs only when 

changes – 6/8 bytes vs simplicity

● Congestion control: WIP
● Bottleneck Bandwidth and Round-trip propagation 

time (BBR)
● Goal: same aggressiveness as TCP / QUIC

● qh://

— Quite Ok HTTP on top of QOTP

— No Let’s encrypt

— Key material via DNS TXT record

— Certificates needed?

— Yes/no, but never for encryption, for signatures
— Where to put? Trailer: Signature, Certificate
— Streaming? Transfer-Encoding: chunked

— No need for Oracles in the blockchain world → 
JSON signed by qh:// if certificate provided
— How to access?

— Other questions: QPACK or zstd for header 
compression?



HSG 202511

Ultimate Goal
● Make SPA great again (single page 

application)

● 1st packet: GET request

● 1st reply: compressed HTML/Javascript in 
~1.3KB with relevant Fetch requests

● 2.. reply packets: data/layout

● Make SPAs load faster

● SPA simplify backend and frontend 
development

● PrevelteKit

● Server-Side Pre Rendering (SSPR) with 
hydration / jdom

● TODO: extract relevant Fetch requests, add to 
front of the 1st reply

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://github.com/tbocek/preveltekit
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch


HSG 202512

Questions?

Dr. Thomas Bocek 
thomas.bocek@ost.ch

mailto:thomas.bocek@ost.ch

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

